1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
*> \brief \b DSTT22
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK,
* LDWORK, RESULT )
*
* .. Scalar Arguments ..
* INTEGER KBAND, LDU, LDWORK, M, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION AD( * ), AE( * ), RESULT( 2 ), SD( * ),
* $ SE( * ), U( LDU, * ), WORK( LDWORK, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DSTT22 checks a set of M eigenvalues and eigenvectors,
*>
*> A U = U S
*>
*> where A is symmetric tridiagonal, the columns of U are orthogonal,
*> and S is diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1).
*> Two tests are performed:
*>
*> RESULT(1) = | U' A U - S | / ( |A| m ulp )
*>
*> RESULT(2) = | I - U'U | / ( m ulp )
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The size of the matrix. If it is zero, DSTT22 does nothing.
*> It must be at least zero.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of eigenpairs to check. If it is zero, DSTT22
*> does nothing. It must be at least zero.
*> \endverbatim
*>
*> \param[in] KBAND
*> \verbatim
*> KBAND is INTEGER
*> The bandwidth of the matrix S. It may only be zero or one.
*> If zero, then S is diagonal, and SE is not referenced. If
*> one, then S is symmetric tri-diagonal.
*> \endverbatim
*>
*> \param[in] AD
*> \verbatim
*> AD is DOUBLE PRECISION array, dimension (N)
*> The diagonal of the original (unfactored) matrix A. A is
*> assumed to be symmetric tridiagonal.
*> \endverbatim
*>
*> \param[in] AE
*> \verbatim
*> AE is DOUBLE PRECISION array, dimension (N)
*> The off-diagonal of the original (unfactored) matrix A. A
*> is assumed to be symmetric tridiagonal. AE(1) is ignored,
*> AE(2) is the (1,2) and (2,1) element, etc.
*> \endverbatim
*>
*> \param[in] SD
*> \verbatim
*> SD is DOUBLE PRECISION array, dimension (N)
*> The diagonal of the (symmetric tri-) diagonal matrix S.
*> \endverbatim
*>
*> \param[in] SE
*> \verbatim
*> SE is DOUBLE PRECISION array, dimension (N)
*> The off-diagonal of the (symmetric tri-) diagonal matrix S.
*> Not referenced if KBSND=0. If KBAND=1, then AE(1) is
*> ignored, SE(2) is the (1,2) and (2,1) element, etc.
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*> U is DOUBLE PRECISION array, dimension (LDU, N)
*> The orthogonal matrix in the decomposition.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> The leading dimension of U. LDU must be at least N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (LDWORK, M+1)
*> \endverbatim
*>
*> \param[in] LDWORK
*> \verbatim
*> LDWORK is INTEGER
*> The leading dimension of WORK. LDWORK must be at least
*> max(1,M).
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION array, dimension (2)
*> The values computed by the two tests described above. The
*> values are currently limited to 1/ulp, to avoid overflow.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_eig
*
* =====================================================================
SUBROUTINE DSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK,
$ LDWORK, RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER KBAND, LDU, LDWORK, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION AD( * ), AE( * ), RESULT( 2 ), SD( * ),
$ SE( * ), U( LDU, * ), WORK( LDWORK, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* ..
* .. Local Scalars ..
INTEGER I, J, K
DOUBLE PRECISION ANORM, AUKJ, ULP, UNFL, WNORM
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
EXTERNAL DLAMCH, DLANGE, DLANSY
* ..
* .. External Subroutines ..
EXTERNAL DGEMM
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
IF( N.LE.0 .OR. M.LE.0 )
$ RETURN
*
UNFL = DLAMCH( 'Safe minimum' )
ULP = DLAMCH( 'Epsilon' )
*
* Do Test 1
*
* Compute the 1-norm of A.
*
IF( N.GT.1 ) THEN
ANORM = ABS( AD( 1 ) ) + ABS( AE( 1 ) )
DO 10 J = 2, N - 1
ANORM = MAX( ANORM, ABS( AD( J ) )+ABS( AE( J ) )+
$ ABS( AE( J-1 ) ) )
10 CONTINUE
ANORM = MAX( ANORM, ABS( AD( N ) )+ABS( AE( N-1 ) ) )
ELSE
ANORM = ABS( AD( 1 ) )
END IF
ANORM = MAX( ANORM, UNFL )
*
* Norm of U'AU - S
*
DO 40 I = 1, M
DO 30 J = 1, M
WORK( I, J ) = ZERO
DO 20 K = 1, N
AUKJ = AD( K )*U( K, J )
IF( K.NE.N )
$ AUKJ = AUKJ + AE( K )*U( K+1, J )
IF( K.NE.1 )
$ AUKJ = AUKJ + AE( K-1 )*U( K-1, J )
WORK( I, J ) = WORK( I, J ) + U( K, I )*AUKJ
20 CONTINUE
30 CONTINUE
WORK( I, I ) = WORK( I, I ) - SD( I )
IF( KBAND.EQ.1 ) THEN
IF( I.NE.1 )
$ WORK( I, I-1 ) = WORK( I, I-1 ) - SE( I-1 )
IF( I.NE.N )
$ WORK( I, I+1 ) = WORK( I, I+1 ) - SE( I )
END IF
40 CONTINUE
*
WNORM = DLANSY( '1', 'L', M, WORK, M, WORK( 1, M+1 ) )
*
IF( ANORM.GT.WNORM ) THEN
RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP )
ELSE
IF( ANORM.LT.ONE ) THEN
RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP )
ELSE
RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( M ) ) / ( M*ULP )
END IF
END IF
*
* Do Test 2
*
* Compute U'U - I
*
CALL DGEMM( 'T', 'N', M, M, N, ONE, U, LDU, U, LDU, ZERO, WORK,
$ M )
*
DO 50 J = 1, M
WORK( J, J ) = WORK( J, J ) - ONE
50 CONTINUE
*
RESULT( 2 ) = MIN( DBLE( M ), DLANGE( '1', M, M, WORK, M, WORK( 1,
$ M+1 ) ) ) / ( M*ULP )
*
RETURN
*
* End of DSTT22
*
END
|