1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
*> \brief \b SBDT02
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SBDT02( M, N, B, LDB, C, LDC, U, LDU, WORK, RESID )
*
* .. Scalar Arguments ..
* INTEGER LDB, LDC, LDU, M, N
* REAL RESID
* ..
* .. Array Arguments ..
* REAL B( LDB, * ), C( LDC, * ), U( LDU, * ),
* $ WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SBDT02 tests the change of basis C = U' * B by computing the residual
*>
*> RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ),
*>
*> where B and C are M by N matrices, U is an M by M orthogonal matrix,
*> and EPS is the machine precision.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrices B and C and the order of
*> the matrix Q.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrices B and C.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is REAL array, dimension (LDB,N)
*> The m by n matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,M).
*> \endverbatim
*>
*> \param[in] C
*> \verbatim
*> C is REAL array, dimension (LDC,N)
*> The m by n matrix C, assumed to contain U' * B.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*> U is REAL array, dimension (LDU,M)
*> The m by m orthogonal matrix U.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> The leading dimension of the array U. LDU >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ),
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_eig
*
* =====================================================================
SUBROUTINE SBDT02( M, N, B, LDB, C, LDC, U, LDU, WORK, RESID )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDB, LDC, LDU, M, N
REAL RESID
* ..
* .. Array Arguments ..
REAL B( LDB, * ), C( LDC, * ), U( LDU, * ),
$ WORK( * )
* ..
*
* ======================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER J
REAL BNORM, EPS, REALMN
* ..
* .. External Functions ..
REAL SASUM, SLAMCH, SLANGE
EXTERNAL SASUM, SLAMCH, SLANGE
* ..
* .. External Subroutines ..
EXTERNAL SCOPY, SGEMV
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
RESID = ZERO
IF( M.LE.0 .OR. N.LE.0 )
$ RETURN
REALMN = REAL( MAX( M, N ) )
EPS = SLAMCH( 'Precision' )
*
* Compute norm( B - U * C )
*
DO 10 J = 1, N
CALL SCOPY( M, B( 1, J ), 1, WORK, 1 )
CALL SGEMV( 'No transpose', M, M, -ONE, U, LDU, C( 1, J ), 1,
$ ONE, WORK, 1 )
RESID = MAX( RESID, SASUM( M, WORK, 1 ) )
10 CONTINUE
*
* Compute norm of B.
*
BNORM = SLANGE( '1', M, N, B, LDB, WORK )
*
IF( BNORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
IF( BNORM.GE.RESID ) THEN
RESID = ( RESID / BNORM ) / ( REALMN*EPS )
ELSE
IF( BNORM.LT.ONE ) THEN
RESID = ( MIN( RESID, REALMN*BNORM ) / BNORM ) /
$ ( REALMN*EPS )
ELSE
RESID = MIN( RESID / BNORM, REALMN ) / ( REALMN*EPS )
END IF
END IF
END IF
RETURN
*
* End of SBDT02
*
END
|