1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
*> \brief \b SGET22
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, WR,
* WI, WORK, RESULT )
*
* .. Scalar Arguments ..
* CHARACTER TRANSA, TRANSE, TRANSW
* INTEGER LDA, LDE, N
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), E( LDE, * ), RESULT( 2 ), WI( * ),
* $ WORK( * ), WR( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SGET22 does an eigenvector check.
*>
*> The basic test is:
*>
*> RESULT(1) = | A E - E W | / ( |A| |E| ulp )
*>
*> using the 1-norm. It also tests the normalization of E:
*>
*> RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
*> j
*>
*> where E(j) is the j-th eigenvector, and m-norm is the max-norm of a
*> vector. If an eigenvector is complex, as determined from WI(j)
*> nonzero, then the max-norm of the vector ( er + i*ei ) is the maximum
*> of
*> |er(1)| + |ei(1)|, ... , |er(n)| + |ei(n)|
*>
*> W is a block diagonal matrix, with a 1 by 1 block for each real
*> eigenvalue and a 2 by 2 block for each complex conjugate pair.
*> If eigenvalues j and j+1 are a complex conjugate pair, so that
*> WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the 2 by 2
*> block corresponding to the pair will be:
*>
*> ( wr wi )
*> ( -wi wr )
*>
*> Such a block multiplying an n by 2 matrix ( ur ui ) on the right
*> will be the same as multiplying ur + i*ui by wr + i*wi.
*>
*> To handle various schemes for storage of left eigenvectors, there are
*> options to use A-transpose instead of A, E-transpose instead of E,
*> and/or W-transpose instead of W.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANSA
*> \verbatim
*> TRANSA is CHARACTER*1
*> Specifies whether or not A is transposed.
*> = 'N': No transpose
*> = 'T': Transpose
*> = 'C': Conjugate transpose (= Transpose)
*> \endverbatim
*>
*> \param[in] TRANSE
*> \verbatim
*> TRANSE is CHARACTER*1
*> Specifies whether or not E is transposed.
*> = 'N': No transpose, eigenvectors are in columns of E
*> = 'T': Transpose, eigenvectors are in rows of E
*> = 'C': Conjugate transpose (= Transpose)
*> \endverbatim
*>
*> \param[in] TRANSW
*> \verbatim
*> TRANSW is CHARACTER*1
*> Specifies whether or not W is transposed.
*> = 'N': No transpose
*> = 'T': Transpose, use -WI(j) instead of WI(j)
*> = 'C': Conjugate transpose, use -WI(j) instead of WI(j)
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> The matrix whose eigenvectors are in E.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is REAL array, dimension (LDE,N)
*> The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors
*> are stored in the columns of E, if TRANSE = 'T' or 'C', the
*> eigenvectors are stored in the rows of E.
*> \endverbatim
*>
*> \param[in] LDE
*> \verbatim
*> LDE is INTEGER
*> The leading dimension of the array E. LDE >= max(1,N).
*> \endverbatim
*>
*> \param[in] WR
*> \verbatim
*> WR is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[in] WI
*> \verbatim
*> WI is REAL array, dimension (N)
*>
*> The real and imaginary parts of the eigenvalues of A.
*> Purely real eigenvalues are indicated by WI(j) = 0.
*> Complex conjugate pairs are indicated by WR(j)=WR(j+1) and
*> WI(j) = - WI(j+1) non-zero; the real part is assumed to be
*> stored in the j-th row/column and the imaginary part in
*> the (j+1)-th row/column.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (N*(N+1))
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is REAL array, dimension (2)
*> RESULT(1) = | A E - E W | / ( |A| |E| ulp )
*> RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_eig
*
* =====================================================================
SUBROUTINE SGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, WR,
$ WI, WORK, RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER TRANSA, TRANSE, TRANSW
INTEGER LDA, LDE, N
* ..
* .. Array Arguments ..
REAL A( LDA, * ), E( LDE, * ), RESULT( 2 ), WI( * ),
$ WORK( * ), WR( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0, ONE = 1.0 )
* ..
* .. Local Scalars ..
CHARACTER NORMA, NORME
INTEGER IECOL, IEROW, INCE, IPAIR, ITRNSE, J, JCOL,
$ JVEC
REAL ANORM, ENORM, ENRMAX, ENRMIN, ERRNRM, TEMP1,
$ ULP, UNFL
* ..
* .. Local Arrays ..
REAL WMAT( 2, 2 )
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH, SLANGE
EXTERNAL LSAME, SLAMCH, SLANGE
* ..
* .. External Subroutines ..
EXTERNAL SAXPY, SGEMM, SLASET
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
* Initialize RESULT (in case N=0)
*
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
IF( N.LE.0 )
$ RETURN
*
UNFL = SLAMCH( 'Safe minimum' )
ULP = SLAMCH( 'Precision' )
*
ITRNSE = 0
INCE = 1
NORMA = 'O'
NORME = 'O'
*
IF( LSAME( TRANSA, 'T' ) .OR. LSAME( TRANSA, 'C' ) ) THEN
NORMA = 'I'
END IF
IF( LSAME( TRANSE, 'T' ) .OR. LSAME( TRANSE, 'C' ) ) THEN
NORME = 'I'
ITRNSE = 1
INCE = LDE
END IF
*
* Check normalization of E
*
ENRMIN = ONE / ULP
ENRMAX = ZERO
IF( ITRNSE.EQ.0 ) THEN
*
* Eigenvectors are column vectors.
*
IPAIR = 0
DO 30 JVEC = 1, N
TEMP1 = ZERO
IF( IPAIR.EQ.0 .AND. JVEC.LT.N .AND. WI( JVEC ).NE.ZERO )
$ IPAIR = 1
IF( IPAIR.EQ.1 ) THEN
*
* Complex eigenvector
*
DO 10 J = 1, N
TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) )+
$ ABS( E( J, JVEC+1 ) ) )
10 CONTINUE
ENRMIN = MIN( ENRMIN, TEMP1 )
ENRMAX = MAX( ENRMAX, TEMP1 )
IPAIR = 2
ELSE IF( IPAIR.EQ.2 ) THEN
IPAIR = 0
ELSE
*
* Real eigenvector
*
DO 20 J = 1, N
TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) ) )
20 CONTINUE
ENRMIN = MIN( ENRMIN, TEMP1 )
ENRMAX = MAX( ENRMAX, TEMP1 )
IPAIR = 0
END IF
30 CONTINUE
*
ELSE
*
* Eigenvectors are row vectors.
*
DO 40 JVEC = 1, N
WORK( JVEC ) = ZERO
40 CONTINUE
*
DO 60 J = 1, N
IPAIR = 0
DO 50 JVEC = 1, N
IF( IPAIR.EQ.0 .AND. JVEC.LT.N .AND. WI( JVEC ).NE.ZERO )
$ IPAIR = 1
IF( IPAIR.EQ.1 ) THEN
WORK( JVEC ) = MAX( WORK( JVEC ),
$ ABS( E( J, JVEC ) )+ABS( E( J,
$ JVEC+1 ) ) )
WORK( JVEC+1 ) = WORK( JVEC )
ELSE IF( IPAIR.EQ.2 ) THEN
IPAIR = 0
ELSE
WORK( JVEC ) = MAX( WORK( JVEC ),
$ ABS( E( J, JVEC ) ) )
IPAIR = 0
END IF
50 CONTINUE
60 CONTINUE
*
DO 70 JVEC = 1, N
ENRMIN = MIN( ENRMIN, WORK( JVEC ) )
ENRMAX = MAX( ENRMAX, WORK( JVEC ) )
70 CONTINUE
END IF
*
* Norm of A:
*
ANORM = MAX( SLANGE( NORMA, N, N, A, LDA, WORK ), UNFL )
*
* Norm of E:
*
ENORM = MAX( SLANGE( NORME, N, N, E, LDE, WORK ), ULP )
*
* Norm of error:
*
* Error = AE - EW
*
CALL SLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
*
IPAIR = 0
IEROW = 1
IECOL = 1
*
DO 80 JCOL = 1, N
IF( ITRNSE.EQ.1 ) THEN
IEROW = JCOL
ELSE
IECOL = JCOL
END IF
*
IF( IPAIR.EQ.0 .AND. WI( JCOL ).NE.ZERO )
$ IPAIR = 1
*
IF( IPAIR.EQ.1 ) THEN
WMAT( 1, 1 ) = WR( JCOL )
WMAT( 2, 1 ) = -WI( JCOL )
WMAT( 1, 2 ) = WI( JCOL )
WMAT( 2, 2 ) = WR( JCOL )
CALL SGEMM( TRANSE, TRANSW, N, 2, 2, ONE, E( IEROW, IECOL ),
$ LDE, WMAT, 2, ZERO, WORK( N*( JCOL-1 )+1 ), N )
IPAIR = 2
ELSE IF( IPAIR.EQ.2 ) THEN
IPAIR = 0
*
ELSE
*
CALL SAXPY( N, WR( JCOL ), E( IEROW, IECOL ), INCE,
$ WORK( N*( JCOL-1 )+1 ), 1 )
IPAIR = 0
END IF
*
80 CONTINUE
*
CALL SGEMM( TRANSA, TRANSE, N, N, N, ONE, A, LDA, E, LDE, -ONE,
$ WORK, N )
*
ERRNRM = SLANGE( 'One', N, N, WORK, N, WORK( N*N+1 ) ) / ENORM
*
* Compute RESULT(1) (avoiding under/overflow)
*
IF( ANORM.GT.ERRNRM ) THEN
RESULT( 1 ) = ( ERRNRM / ANORM ) / ULP
ELSE
IF( ANORM.LT.ONE ) THEN
RESULT( 1 ) = ( MIN( ERRNRM, ANORM ) / ANORM ) / ULP
ELSE
RESULT( 1 ) = MIN( ERRNRM / ANORM, ONE ) / ULP
END IF
END IF
*
* Compute RESULT(2) : the normalization error in E.
*
RESULT( 2 ) = MAX( ABS( ENRMAX-ONE ), ABS( ENRMIN-ONE ) ) /
$ ( REAL( N )*ULP )
*
RETURN
*
* End of SGET22
*
END
|