1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
*> \brief \b SGET33
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SGET33( RMAX, LMAX, NINFO, KNT )
*
* .. Scalar Arguments ..
* INTEGER KNT, LMAX, NINFO
* REAL RMAX
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SGET33 tests SLANV2, a routine for putting 2 by 2 blocks into
*> standard form. In other words, it computes a two by two rotation
*> [[C,S];[-S,C]] where in
*>
*> [ C S ][T(1,1) T(1,2)][ C -S ] = [ T11 T12 ]
*> [-S C ][T(2,1) T(2,2)][ S C ] [ T21 T22 ]
*>
*> either
*> 1) T21=0 (real eigenvalues), or
*> 2) T11=T22 and T21*T12<0 (complex conjugate eigenvalues).
*> We also verify that the residual is small.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[out] RMAX
*> \verbatim
*> RMAX is REAL
*> Value of the largest test ratio.
*> \endverbatim
*>
*> \param[out] LMAX
*> \verbatim
*> LMAX is INTEGER
*> Example number where largest test ratio achieved.
*> \endverbatim
*>
*> \param[out] NINFO
*> \verbatim
*> NINFO is INTEGER
*> Number of examples returned with INFO .NE. 0.
*> \endverbatim
*>
*> \param[out] KNT
*> \verbatim
*> KNT is INTEGER
*> Total number of examples tested.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_eig
*
* =====================================================================
SUBROUTINE SGET33( RMAX, LMAX, NINFO, KNT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER KNT, LMAX, NINFO
REAL RMAX
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
REAL TWO, FOUR
PARAMETER ( TWO = 2.0E0, FOUR = 4.0E0 )
* ..
* .. Local Scalars ..
INTEGER I1, I2, I3, I4, IM1, IM2, IM3, IM4, J1, J2, J3
REAL BIGNUM, CS, EPS, RES, SMLNUM, SN, SUM, TNRM,
$ WI1, WI2, WR1, WR2
* ..
* .. Local Arrays ..
REAL Q( 2, 2 ), T( 2, 2 ), T1( 2, 2 ), T2( 2, 2 ),
$ VAL( 4 ), VM( 3 )
* ..
* .. External Functions ..
REAL SLAMCH
EXTERNAL SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL SLABAD, SLANV2
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SIGN
* ..
* .. Executable Statements ..
*
* Get machine parameters
*
EPS = SLAMCH( 'P' )
SMLNUM = SLAMCH( 'S' ) / EPS
BIGNUM = ONE / SMLNUM
CALL SLABAD( SMLNUM, BIGNUM )
*
* Set up test case parameters
*
VAL( 1 ) = ONE
VAL( 2 ) = ONE + TWO*EPS
VAL( 3 ) = TWO
VAL( 4 ) = TWO - FOUR*EPS
VM( 1 ) = SMLNUM
VM( 2 ) = ONE
VM( 3 ) = BIGNUM
*
KNT = 0
NINFO = 0
LMAX = 0
RMAX = ZERO
*
* Begin test loop
*
DO 150 I1 = 1, 4
DO 140 I2 = 1, 4
DO 130 I3 = 1, 4
DO 120 I4 = 1, 4
DO 110 IM1 = 1, 3
DO 100 IM2 = 1, 3
DO 90 IM3 = 1, 3
DO 80 IM4 = 1, 3
T( 1, 1 ) = VAL( I1 )*VM( IM1 )
T( 1, 2 ) = VAL( I2 )*VM( IM2 )
T( 2, 1 ) = -VAL( I3 )*VM( IM3 )
T( 2, 2 ) = VAL( I4 )*VM( IM4 )
TNRM = MAX( ABS( T( 1, 1 ) ),
$ ABS( T( 1, 2 ) ), ABS( T( 2, 1 ) ),
$ ABS( T( 2, 2 ) ) )
T1( 1, 1 ) = T( 1, 1 )
T1( 1, 2 ) = T( 1, 2 )
T1( 2, 1 ) = T( 2, 1 )
T1( 2, 2 ) = T( 2, 2 )
Q( 1, 1 ) = ONE
Q( 1, 2 ) = ZERO
Q( 2, 1 ) = ZERO
Q( 2, 2 ) = ONE
*
CALL SLANV2( T( 1, 1 ), T( 1, 2 ),
$ T( 2, 1 ), T( 2, 2 ), WR1,
$ WI1, WR2, WI2, CS, SN )
DO 10 J1 = 1, 2
RES = Q( J1, 1 )*CS + Q( J1, 2 )*SN
Q( J1, 2 ) = -Q( J1, 1 )*SN +
$ Q( J1, 2 )*CS
Q( J1, 1 ) = RES
10 CONTINUE
*
RES = ZERO
RES = RES + ABS( Q( 1, 1 )**2+
$ Q( 1, 2 )**2-ONE ) / EPS
RES = RES + ABS( Q( 2, 2 )**2+
$ Q( 2, 1 )**2-ONE ) / EPS
RES = RES + ABS( Q( 1, 1 )*Q( 2, 1 )+
$ Q( 1, 2 )*Q( 2, 2 ) ) / EPS
DO 40 J1 = 1, 2
DO 30 J2 = 1, 2
T2( J1, J2 ) = ZERO
DO 20 J3 = 1, 2
T2( J1, J2 ) = T2( J1, J2 ) +
$ T1( J1, J3 )*
$ Q( J3, J2 )
20 CONTINUE
30 CONTINUE
40 CONTINUE
DO 70 J1 = 1, 2
DO 60 J2 = 1, 2
SUM = T( J1, J2 )
DO 50 J3 = 1, 2
SUM = SUM - Q( J3, J1 )*
$ T2( J3, J2 )
50 CONTINUE
RES = RES + ABS( SUM ) / EPS / TNRM
60 CONTINUE
70 CONTINUE
IF( T( 2, 1 ).NE.ZERO .AND.
$ ( T( 1, 1 ).NE.T( 2,
$ 2 ) .OR. SIGN( ONE, T( 1,
$ 2 ) )*SIGN( ONE, T( 2,
$ 1 ) ).GT.ZERO ) )RES = RES + ONE / EPS
KNT = KNT + 1
IF( RES.GT.RMAX ) THEN
LMAX = KNT
RMAX = RES
END IF
80 CONTINUE
90 CONTINUE
100 CONTINUE
110 CONTINUE
120 CONTINUE
130 CONTINUE
140 CONTINUE
150 CONTINUE
*
RETURN
*
* End of SGET33
*
END
|