1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
*> \brief \b SLARFY
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SLARFY( UPLO, N, V, INCV, TAU, C, LDC, WORK )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INCV, LDC, N
* REAL TAU
* ..
* .. Array Arguments ..
* REAL C( LDC, * ), V( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLARFY applies an elementary reflector, or Householder matrix, H,
*> to an n x n symmetric matrix C, from both the left and the right.
*>
*> H is represented in the form
*>
*> H = I - tau * v * v'
*>
*> where tau is a scalar and v is a vector.
*>
*> If tau is zero, then H is taken to be the unit matrix.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> symmetric matrix C is stored.
*> = 'U': Upper triangle
*> = 'L': Lower triangle
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix C. N >= 0.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*> V is REAL array, dimension
*> (1 + (N-1)*abs(INCV))
*> The vector v as described above.
*> \endverbatim
*>
*> \param[in] INCV
*> \verbatim
*> INCV is INTEGER
*> The increment between successive elements of v. INCV must
*> not be zero.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is REAL
*> The value tau as described above.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is REAL array, dimension (LDC, N)
*> On entry, the matrix C.
*> On exit, C is overwritten by H * C * H'.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max( 1, N ).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (N)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_eig
*
* =====================================================================
SUBROUTINE SLARFY( UPLO, N, V, INCV, TAU, C, LDC, WORK )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INCV, LDC, N
REAL TAU
* ..
* .. Array Arguments ..
REAL C( LDC, * ), V( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO, HALF
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0, HALF = 0.5E+0 )
* ..
* .. Local Scalars ..
REAL ALPHA
* ..
* .. External Subroutines ..
EXTERNAL SAXPY, SSYMV, SSYR2
* ..
* .. External Functions ..
REAL SDOT
EXTERNAL SDOT
* ..
* .. Executable Statements ..
*
IF( TAU.EQ.ZERO )
$ RETURN
*
* Form w:= C * v
*
CALL SSYMV( UPLO, N, ONE, C, LDC, V, INCV, ZERO, WORK, 1 )
*
ALPHA = -HALF*TAU*SDOT( N, WORK, 1, V, INCV )
CALL SAXPY( N, ALPHA, V, INCV, WORK, 1 )
*
* C := C - v * w' - w * v'
*
CALL SSYR2( UPLO, N, -TAU, V, INCV, WORK, 1, C, LDC )
*
RETURN
*
* End of SLARFY
*
END
|