1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
*> \brief \b SSVDCT
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SSVDCT( N, S, E, SHIFT, NUM )
*
* .. Scalar Arguments ..
* INTEGER N, NUM
* REAL SHIFT
* ..
* .. Array Arguments ..
* REAL E( * ), S( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SSVDCT counts the number NUM of eigenvalues of a 2*N by 2*N
*> tridiagonal matrix T which are less than or equal to SHIFT. T is
*> formed by putting zeros on the diagonal and making the off-diagonals
*> equal to S(1), E(1), S(2), E(2), ... , E(N-1), S(N). If SHIFT is
*> positive, NUM is equal to N plus the number of singular values of a
*> bidiagonal matrix B less than or equal to SHIFT. Here B has diagonal
*> entries S(1), ..., S(N) and superdiagonal entries E(1), ... E(N-1).
*> If SHIFT is negative, NUM is equal to the number of singular values
*> of B greater than or equal to -SHIFT.
*>
*> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
*> Matrix", Report CS41, Computer Science Dept., Stanford University,
*> July 21, 1966
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The dimension of the bidiagonal matrix B.
*> \endverbatim
*>
*> \param[in] S
*> \verbatim
*> S is REAL array, dimension (N)
*> The diagonal entries of the bidiagonal matrix B.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is REAL array of dimension (N-1)
*> The superdiagonal entries of the bidiagonal matrix B.
*> \endverbatim
*>
*> \param[in] SHIFT
*> \verbatim
*> SHIFT is REAL
*> The shift, used as described under Purpose.
*> \endverbatim
*>
*> \param[out] NUM
*> \verbatim
*> NUM is INTEGER
*> The number of eigenvalues of T less than or equal to SHIFT.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_eig
*
* =====================================================================
SUBROUTINE SSVDCT( N, S, E, SHIFT, NUM )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER N, NUM
REAL SHIFT
* ..
* .. Array Arguments ..
REAL E( * ), S( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE
PARAMETER ( ONE = 1.0E0 )
REAL ZERO
PARAMETER ( ZERO = 0.0E0 )
* ..
* .. Local Scalars ..
INTEGER I
REAL M1, M2, MX, OVFL, SOV, SSHIFT, SSUN, SUN, TMP,
$ TOM, U, UNFL
* ..
* .. External Functions ..
REAL SLAMCH
EXTERNAL SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
* ..
* .. Executable Statements ..
*
* Get machine constants
*
UNFL = 2*SLAMCH( 'Safe minimum' )
OVFL = ONE / UNFL
*
* Find largest entry
*
MX = ABS( S( 1 ) )
DO 10 I = 1, N - 1
MX = MAX( MX, ABS( S( I+1 ) ), ABS( E( I ) ) )
10 CONTINUE
*
IF( MX.EQ.ZERO ) THEN
IF( SHIFT.LT.ZERO ) THEN
NUM = 0
ELSE
NUM = 2*N
END IF
RETURN
END IF
*
* Compute scale factors as in Kahan's report
*
SUN = SQRT( UNFL )
SSUN = SQRT( SUN )
SOV = SQRT( OVFL )
TOM = SSUN*SOV
IF( MX.LE.ONE ) THEN
M1 = ONE / MX
M2 = TOM
ELSE
M1 = ONE
M2 = TOM / MX
END IF
*
* Begin counting
*
U = ONE
NUM = 0
SSHIFT = ( SHIFT*M1 )*M2
U = -SSHIFT
IF( U.LE.SUN ) THEN
IF( U.LE.ZERO ) THEN
NUM = NUM + 1
IF( U.GT.-SUN )
$ U = -SUN
ELSE
U = SUN
END IF
END IF
TMP = ( S( 1 )*M1 )*M2
U = -TMP*( TMP / U ) - SSHIFT
IF( U.LE.SUN ) THEN
IF( U.LE.ZERO ) THEN
NUM = NUM + 1
IF( U.GT.-SUN )
$ U = -SUN
ELSE
U = SUN
END IF
END IF
DO 20 I = 1, N - 1
TMP = ( E( I )*M1 )*M2
U = -TMP*( TMP / U ) - SSHIFT
IF( U.LE.SUN ) THEN
IF( U.LE.ZERO ) THEN
NUM = NUM + 1
IF( U.GT.-SUN )
$ U = -SUN
ELSE
U = SUN
END IF
END IF
TMP = ( S( I+1 )*M1 )*M2
U = -TMP*( TMP / U ) - SSHIFT
IF( U.LE.SUN ) THEN
IF( U.LE.ZERO ) THEN
NUM = NUM + 1
IF( U.GT.-SUN )
$ U = -SUN
ELSE
U = SUN
END IF
END IF
20 CONTINUE
RETURN
*
* End of SSVDCT
*
END
|