1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
*> \brief \b SSXT1
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* REAL FUNCTION SSXT1( IJOB, D1, N1, D2, N2, ABSTOL,
* ULP, UNFL )
*
* .. Scalar Arguments ..
* INTEGER IJOB, N1, N2
* REAL ABSTOL, ULP, UNFL
* ..
* .. Array Arguments ..
* REAL D1( * ), D2( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SSXT1 computes the difference between a set of eigenvalues.
*> The result is returned as the function value.
*>
*> IJOB = 1: Computes max { min | D1(i)-D2(j) | }
*> i j
*>
*> IJOB = 2: Computes max { min | D1(i)-D2(j) | /
*> i j
*> ( ABSTOL + |D1(i)|*ULP ) }
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] IJOB
*> \verbatim
*> IJOB is INTEGER
*> Specifies the type of tests to be performed. (See above.)
*> \endverbatim
*>
*> \param[in] D1
*> \verbatim
*> D1 is REAL array, dimension (N1)
*> The first array. D1 should be in increasing order, i.e.,
*> D1(j) <= D1(j+1).
*> \endverbatim
*>
*> \param[in] N1
*> \verbatim
*> N1 is INTEGER
*> The length of D1.
*> \endverbatim
*>
*> \param[in] D2
*> \verbatim
*> D2 is REAL array, dimension (N2)
*> The second array. D2 should be in increasing order, i.e.,
*> D2(j) <= D2(j+1).
*> \endverbatim
*>
*> \param[in] N2
*> \verbatim
*> N2 is INTEGER
*> The length of D2.
*> \endverbatim
*>
*> \param[in] ABSTOL
*> \verbatim
*> ABSTOL is REAL
*> The absolute tolerance, used as a measure of the error.
*> \endverbatim
*>
*> \param[in] ULP
*> \verbatim
*> ULP is REAL
*> Machine precision.
*> \endverbatim
*>
*> \param[in] UNFL
*> \verbatim
*> UNFL is REAL
*> The smallest positive number whose reciprocal does not
*> overflow.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_eig
*
* =====================================================================
REAL FUNCTION SSXT1( IJOB, D1, N1, D2, N2, ABSTOL,
$ ULP, UNFL )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER IJOB, N1, N2
REAL ABSTOL, ULP, UNFL
* ..
* .. Array Arguments ..
REAL D1( * ), D2( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E0 )
* ..
* .. Local Scalars ..
INTEGER I, J
REAL TEMP1, TEMP2
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Executable Statements ..
*
TEMP1 = ZERO
*
J = 1
DO 20 I = 1, N1
10 CONTINUE
IF( D2( J ).LT.D1( I ) .AND. J.LT.N2 ) THEN
J = J + 1
GO TO 10
END IF
IF( J.EQ.1 ) THEN
TEMP2 = ABS( D2( J )-D1( I ) )
IF( IJOB.EQ.2 )
$ TEMP2 = TEMP2 / MAX( UNFL, ABSTOL+ULP*ABS( D1( I ) ) )
ELSE
TEMP2 = MIN( ABS( D2( J )-D1( I ) ),
$ ABS( D1( I )-D2( J-1 ) ) )
IF( IJOB.EQ.2 )
$ TEMP2 = TEMP2 / MAX( UNFL, ABSTOL+ULP*ABS( D1( I ) ) )
END IF
TEMP1 = MAX( TEMP1, TEMP2 )
20 CONTINUE
*
SSXT1 = TEMP1
RETURN
*
* End of SSXT1
*
END
|