File: zcsdts.f

package info (click to toggle)
lapack 3.4.1%2Bdfsg-1%2Bdeb70u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 103,172 kB
  • sloc: fortran: 469,422; ansic: 127,041; makefile: 3,817; python: 267; sh: 94
file content (417 lines) | stat: -rw-r--r-- 13,146 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
*> \brief \b ZCSDTS
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZCSDTS( M, P, Q, X, XF, LDX, U1, LDU1, U2, LDU2, V1T,
*                          LDV1T, V2T, LDV2T, THETA, IWORK, WORK, LWORK,
*                          RWORK, RESULT )
* 
*       .. Scalar Arguments ..
*       INTEGER            LDX, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
*       ..
*       .. Array Arguments ..
*       INTEGER            IWORK( * )
*       DOUBLE PRECISION   RESULT( 9 ), RWORK( * ), THETA( * )
*       COMPLEX*16         U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
*      $                   V2T( LDV2T, * ), WORK( LWORK ), X( LDX, * ),
*      $                   XF( LDX, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZCSDTS tests ZUNCSD, which, given an M-by-M partitioned unitary
*> matrix X,
*>              Q  M-Q
*>       X = [ X11 X12 ] P   ,
*>           [ X21 X22 ] M-P
*>
*> computes the CSD
*>
*>       [ U1    ]**T * [ X11 X12 ] * [ V1    ]
*>       [    U2 ]      [ X21 X22 ]   [    V2 ]
*>
*>                             [  I  0  0 |  0  0  0 ]
*>                             [  0  C  0 |  0 -S  0 ]
*>                             [  0  0  0 |  0  0 -I ]
*>                           = [---------------------] = [ D11 D12 ] .
*>                             [  0  0  0 |  I  0  0 ]   [ D21 D22 ]
*>                             [  0  S  0 |  0  C  0 ]
*>                             [  0  0  I |  0  0  0 ]
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix X.  M >= 0.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*>          P is INTEGER
*>          The number of rows of the matrix X11.  P >= 0.
*> \endverbatim
*>
*> \param[in] Q
*> \verbatim
*>          Q is INTEGER
*>          The number of columns of the matrix X11.  Q >= 0.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*>          X is COMPLEX*16 array, dimension (LDX,M)
*>          The M-by-M matrix X.
*> \endverbatim
*>
*> \param[out] XF
*> \verbatim
*>          XF is COMPLEX*16 array, dimension (LDX,M)
*>          Details of the CSD of X, as returned by ZUNCSD;
*>          see ZUNCSD for further details.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the arrays X and XF.
*>          LDX >= max( 1,M ).
*> \endverbatim
*>
*> \param[out] U1
*> \verbatim
*>          U1 is COMPLEX*16 array, dimension(LDU1,P)
*>          The P-by-P unitary matrix U1.
*> \endverbatim
*>
*> \param[in] LDU1
*> \verbatim
*>          LDU1 is INTEGER
*>          The leading dimension of the array U1. LDU >= max(1,P).
*> \endverbatim
*>
*> \param[out] U2
*> \verbatim
*>          U2 is COMPLEX*16 array, dimension(LDU2,M-P)
*>          The (M-P)-by-(M-P) unitary matrix U2.
*> \endverbatim
*>
*> \param[in] LDU2
*> \verbatim
*>          LDU2 is INTEGER
*>          The leading dimension of the array U2. LDU >= max(1,M-P).
*> \endverbatim
*>
*> \param[out] V1T
*> \verbatim
*>          V1T is COMPLEX*16 array, dimension(LDV1T,Q)
*>          The Q-by-Q unitary matrix V1T.
*> \endverbatim
*>
*> \param[in] LDV1T
*> \verbatim
*>          LDV1T is INTEGER
*>          The leading dimension of the array V1T. LDV1T >=
*>          max(1,Q).
*> \endverbatim
*>
*> \param[out] V2T
*> \verbatim
*>          V2T is COMPLEX*16 array, dimension(LDV2T,M-Q)
*>          The (M-Q)-by-(M-Q) unitary matrix V2T.
*> \endverbatim
*>
*> \param[in] LDV2T
*> \verbatim
*>          LDV2T is INTEGER
*>          The leading dimension of the array V2T. LDV2T >=
*>          max(1,M-Q).
*> \endverbatim
*>
*> \param[out] THETA
*> \verbatim
*>          THETA is DOUBLE PRECISION array, dimension MIN(P,M-P,Q,M-Q)
*>          The CS values of X; the essentially diagonal matrices C and
*>          S are constructed from THETA; see subroutine ZUNCSD for
*>          details.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (M)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is DOUBLE PRECISION array, dimension (9)
*>          The test ratios:
*>          RESULT(1) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 )
*>          RESULT(2) = norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 )
*>          RESULT(3) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 )
*>          RESULT(4) = norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 )
*>          RESULT(5) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP )
*>          RESULT(6) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP )
*>          RESULT(7) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP )
*>          RESULT(8) = norm( I - V2T'*V2T ) / ( MAX(1,M-Q)*ULP )
*>          RESULT(9) = 0        if THETA is in increasing order and
*>                               all angles are in [0,pi/2];
*>                    = ULPINV   otherwise.
*>          ( EPS2 = MAX( norm( I - X'*X ) / M, ULP ). )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16_eig
*
*  =====================================================================
      SUBROUTINE ZCSDTS( M, P, Q, X, XF, LDX, U1, LDU1, U2, LDU2, V1T,
     $                   LDV1T, V2T, LDV2T, THETA, IWORK, WORK, LWORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            LDX, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   RESULT( 9 ), RWORK( * ), THETA( * )
      COMPLEX*16         U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
     $                   V2T( LDV2T, * ), WORK( LWORK ), X( LDX, * ),
     $                   XF( LDX, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   PIOVER2, REALONE, REALZERO
      PARAMETER          ( PIOVER2 = 1.57079632679489662D0,
     $                     REALONE = 1.0D0, REALZERO = 0.0D0 )
      COMPLEX*16         ZERO, ONE
      PARAMETER          ( ZERO = (0.0D0,0.0D0), ONE = (1.0D0,0.0D0) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, R
      DOUBLE PRECISION   EPS2, RESID, ULP, ULPINV
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANHE
      EXTERNAL           DLAMCH, ZLANGE, ZLANHE
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZGEMM, ZLACPY, ZLASET, ZUNCSD, ZHERK
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          REAL, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      ULP = DLAMCH( 'Precision' )
      ULPINV = REALONE / ULP
      CALL ZLASET( 'Full', M, M, ZERO, ONE, WORK, LDX )
      CALL ZHERK( 'Upper', 'Conjugate transpose', M, M, -REALONE,
     $            X, LDX, REALONE, WORK, LDX )
      IF (M.GT.0) THEN
         EPS2 = MAX( ULP, 
     $               ZLANGE( '1', M, M, WORK, LDX, RWORK ) / DBLE( M ) )
      ELSE
         EPS2 = ULP
      END IF
      R = MIN( P, M-P, Q, M-Q )
*
*     Copy the matrix X to the array XF.
*
      CALL ZLACPY( 'Full', M, M, X, LDX, XF, LDX )
*
*     Compute the CSD
*
      CALL ZUNCSD( 'Y', 'Y', 'Y', 'Y', 'N', 'D', M, P, Q, XF(1,1), LDX,
     $             XF(1,Q+1), LDX, XF(P+1,1), LDX, XF(P+1,Q+1), LDX,
     $             THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T,
     $             WORK, LWORK, RWORK, 17*(R+2), IWORK, INFO )
*
*     Compute X := diag(U1,U2)'*X*diag(V1,V2) - [D11 D12; D21 D22]
*
      CALL ZGEMM( 'No transpose', 'Conjugate transpose', P, Q, Q, ONE,
     $            X, LDX, V1T, LDV1T, ZERO, WORK, LDX )
*
      CALL ZGEMM( 'Conjugate transpose', 'No transpose', P, Q, P, ONE,
     $            U1, LDU1, WORK, LDX, ZERO, X, LDX )
*
      DO I = 1, MIN(P,Q)-R
         X(I,I) = X(I,I) - ONE
      END DO
      DO I = 1, R
         X(MIN(P,Q)-R+I,MIN(P,Q)-R+I) =
     $           X(MIN(P,Q)-R+I,MIN(P,Q)-R+I) - DCMPLX( COS(THETA(I)),
     $              0.0D0 )
      END DO
*
      CALL ZGEMM( 'No transpose', 'Conjugate transpose', P, M-Q, M-Q,
     $            ONE, X(1,Q+1), LDX, V2T, LDV2T, ZERO, WORK, LDX )
*
      CALL ZGEMM( 'Conjugate transpose', 'No transpose', P, M-Q, P,
     $            ONE, U1, LDU1, WORK, LDX, ZERO, X(1,Q+1), LDX )
*
      DO I = 1, MIN(P,M-Q)-R
         X(P-I+1,M-I+1) = X(P-I+1,M-I+1) + ONE
      END DO
      DO I = 1, R
         X(P-(MIN(P,M-Q)-R)+1-I,M-(MIN(P,M-Q)-R)+1-I) =
     $      X(P-(MIN(P,M-Q)-R)+1-I,M-(MIN(P,M-Q)-R)+1-I) +
     $      DCMPLX( SIN(THETA(R-I+1)), 0.0D0 )
      END DO
*
      CALL ZGEMM( 'No transpose', 'Conjugate transpose', M-P, Q, Q, ONE,
     $            X(P+1,1), LDX, V1T, LDV1T, ZERO, WORK, LDX )
*
      CALL ZGEMM( 'Conjugate transpose', 'No transpose', M-P, Q, M-P,
     $            ONE, U2, LDU2, WORK, LDX, ZERO, X(P+1,1), LDX )
*
      DO I = 1, MIN(M-P,Q)-R
         X(M-I+1,Q-I+1) = X(M-I+1,Q-I+1) - ONE
      END DO
      DO I = 1, R
         X(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) =
     $             X(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) -
     $             DCMPLX( SIN(THETA(R-I+1)), 0.0D0 )
      END DO
*
      CALL ZGEMM( 'No transpose', 'Conjugate transpose', M-P, M-Q, M-Q,
     $            ONE, X(P+1,Q+1), LDX, V2T, LDV2T, ZERO, WORK, LDX )
*
      CALL ZGEMM( 'Conjugate transpose', 'No transpose', M-P, M-Q, M-P,
     $            ONE, U2, LDU2, WORK, LDX, ZERO, X(P+1,Q+1), LDX )
*
      DO I = 1, MIN(M-P,M-Q)-R
         X(P+I,Q+I) = X(P+I,Q+I) - ONE
      END DO
      DO I = 1, R
         X(P+(MIN(M-P,M-Q)-R)+I,Q+(MIN(M-P,M-Q)-R)+I) =
     $      X(P+(MIN(M-P,M-Q)-R)+I,Q+(MIN(M-P,M-Q)-R)+I) -
     $      DCMPLX( COS(THETA(I)), 0.0D0 )
      END DO
*
*     Compute norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) .
*
      RESID = ZLANGE( '1', P, Q, X, LDX, RWORK )
      RESULT( 1 ) = ( RESID / REAL(MAX(1,P,Q)) ) / EPS2
*
*     Compute norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 ) .
*
      RESID = ZLANGE( '1', P, M-Q, X(1,Q+1), LDX, RWORK )
      RESULT( 2 ) = ( RESID / REAL(MAX(1,P,M-Q)) ) / EPS2
*
*     Compute norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) .
*
      RESID = ZLANGE( '1', M-P, Q, X(P+1,1), LDX, RWORK )
      RESULT( 3 ) = ( RESID / REAL(MAX(1,M-P,Q)) ) / EPS2
*
*     Compute norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 ) .
*
      RESID = ZLANGE( '1', M-P, M-Q, X(P+1,Q+1), LDX, RWORK )
      RESULT( 4 ) = ( RESID / REAL(MAX(1,M-P,M-Q)) ) / EPS2
*
*     Compute I - U1'*U1
*
      CALL ZLASET( 'Full', P, P, ZERO, ONE, WORK, LDU1 )
      CALL ZHERK( 'Upper', 'Conjugate transpose', P, P, -REALONE,
     $            U1, LDU1, REALONE, WORK, LDU1 )
*
*     Compute norm( I - U'*U ) / ( MAX(1,P) * ULP ) .
*
      RESID = ZLANHE( '1', 'Upper', P, WORK, LDU1, RWORK )
      RESULT( 5 ) = ( RESID / REAL(MAX(1,P)) ) / ULP
*
*     Compute I - U2'*U2
*
      CALL ZLASET( 'Full', M-P, M-P, ZERO, ONE, WORK, LDU2 )
      CALL ZHERK( 'Upper', 'Conjugate transpose', M-P, M-P, -REALONE,
     $            U2, LDU2, REALONE, WORK, LDU2 )
*
*     Compute norm( I - U2'*U2 ) / ( MAX(1,M-P) * ULP ) .
*
      RESID = ZLANHE( '1', 'Upper', M-P, WORK, LDU2, RWORK )
      RESULT( 6 ) = ( RESID / REAL(MAX(1,M-P)) ) / ULP
*
*     Compute I - V1T*V1T'
*
      CALL ZLASET( 'Full', Q, Q, ZERO, ONE, WORK, LDV1T )
      CALL ZHERK( 'Upper', 'No transpose', Q, Q, -REALONE,
     $            V1T, LDV1T, REALONE, WORK, LDV1T )
*
*     Compute norm( I - V1T*V1T' ) / ( MAX(1,Q) * ULP ) .
*
      RESID = ZLANHE( '1', 'Upper', Q, WORK, LDV1T, RWORK )
      RESULT( 7 ) = ( RESID / REAL(MAX(1,Q)) ) / ULP
*
*     Compute I - V2T*V2T'
*
      CALL ZLASET( 'Full', M-Q, M-Q, ZERO, ONE, WORK, LDV2T )
      CALL ZHERK( 'Upper', 'No transpose', M-Q, M-Q, -REALONE,
     $            V2T, LDV2T, REALONE, WORK, LDV2T )
*
*     Compute norm( I - V2T*V2T' ) / ( MAX(1,M-Q) * ULP ) .
*
      RESID = ZLANHE( '1', 'Upper', M-Q, WORK, LDV2T, RWORK )
      RESULT( 8 ) = ( RESID / REAL(MAX(1,M-Q)) ) / ULP
*
*     Check sorting
*
      RESULT(9) = REALZERO
      DO I = 1, R
         IF( THETA(I).LT.REALZERO .OR. THETA(I).GT.PIOVER2 ) THEN
            RESULT(9) = ULPINV
         END IF
         IF( I.GT.1) THEN
            IF ( THETA(I).LT.THETA(I-1) ) THEN
               RESULT(9) = ULPINV
            END IF
         END IF
      END DO
*
      RETURN
*      
*     End of ZCSDTS
*
      END