1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
|
*> \brief \b ZCSDTS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZCSDTS( M, P, Q, X, XF, LDX, U1, LDU1, U2, LDU2, V1T,
* LDV1T, V2T, LDV2T, THETA, IWORK, WORK, LWORK,
* RWORK, RESULT )
*
* .. Scalar Arguments ..
* INTEGER LDX, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
* ..
* .. Array Arguments ..
* INTEGER IWORK( * )
* DOUBLE PRECISION RESULT( 9 ), RWORK( * ), THETA( * )
* COMPLEX*16 U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
* $ V2T( LDV2T, * ), WORK( LWORK ), X( LDX, * ),
* $ XF( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZCSDTS tests ZUNCSD, which, given an M-by-M partitioned unitary
*> matrix X,
*> Q M-Q
*> X = [ X11 X12 ] P ,
*> [ X21 X22 ] M-P
*>
*> computes the CSD
*>
*> [ U1 ]**T * [ X11 X12 ] * [ V1 ]
*> [ U2 ] [ X21 X22 ] [ V2 ]
*>
*> [ I 0 0 | 0 0 0 ]
*> [ 0 C 0 | 0 -S 0 ]
*> [ 0 0 0 | 0 0 -I ]
*> = [---------------------] = [ D11 D12 ] .
*> [ 0 0 0 | I 0 0 ] [ D21 D22 ]
*> [ 0 S 0 | 0 C 0 ]
*> [ 0 0 I | 0 0 0 ]
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix X. M >= 0.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*> P is INTEGER
*> The number of rows of the matrix X11. P >= 0.
*> \endverbatim
*>
*> \param[in] Q
*> \verbatim
*> Q is INTEGER
*> The number of columns of the matrix X11. Q >= 0.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX*16 array, dimension (LDX,M)
*> The M-by-M matrix X.
*> \endverbatim
*>
*> \param[out] XF
*> \verbatim
*> XF is COMPLEX*16 array, dimension (LDX,M)
*> Details of the CSD of X, as returned by ZUNCSD;
*> see ZUNCSD for further details.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the arrays X and XF.
*> LDX >= max( 1,M ).
*> \endverbatim
*>
*> \param[out] U1
*> \verbatim
*> U1 is COMPLEX*16 array, dimension(LDU1,P)
*> The P-by-P unitary matrix U1.
*> \endverbatim
*>
*> \param[in] LDU1
*> \verbatim
*> LDU1 is INTEGER
*> The leading dimension of the array U1. LDU >= max(1,P).
*> \endverbatim
*>
*> \param[out] U2
*> \verbatim
*> U2 is COMPLEX*16 array, dimension(LDU2,M-P)
*> The (M-P)-by-(M-P) unitary matrix U2.
*> \endverbatim
*>
*> \param[in] LDU2
*> \verbatim
*> LDU2 is INTEGER
*> The leading dimension of the array U2. LDU >= max(1,M-P).
*> \endverbatim
*>
*> \param[out] V1T
*> \verbatim
*> V1T is COMPLEX*16 array, dimension(LDV1T,Q)
*> The Q-by-Q unitary matrix V1T.
*> \endverbatim
*>
*> \param[in] LDV1T
*> \verbatim
*> LDV1T is INTEGER
*> The leading dimension of the array V1T. LDV1T >=
*> max(1,Q).
*> \endverbatim
*>
*> \param[out] V2T
*> \verbatim
*> V2T is COMPLEX*16 array, dimension(LDV2T,M-Q)
*> The (M-Q)-by-(M-Q) unitary matrix V2T.
*> \endverbatim
*>
*> \param[in] LDV2T
*> \verbatim
*> LDV2T is INTEGER
*> The leading dimension of the array V2T. LDV2T >=
*> max(1,M-Q).
*> \endverbatim
*>
*> \param[out] THETA
*> \verbatim
*> THETA is DOUBLE PRECISION array, dimension MIN(P,M-P,Q,M-Q)
*> The CS values of X; the essentially diagonal matrices C and
*> S are constructed from THETA; see subroutine ZUNCSD for
*> details.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (M)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION array, dimension (9)
*> The test ratios:
*> RESULT(1) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 )
*> RESULT(2) = norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 )
*> RESULT(3) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 )
*> RESULT(4) = norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 )
*> RESULT(5) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP )
*> RESULT(6) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP )
*> RESULT(7) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP )
*> RESULT(8) = norm( I - V2T'*V2T ) / ( MAX(1,M-Q)*ULP )
*> RESULT(9) = 0 if THETA is in increasing order and
*> all angles are in [0,pi/2];
*> = ULPINV otherwise.
*> ( EPS2 = MAX( norm( I - X'*X ) / M, ULP ). )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_eig
*
* =====================================================================
SUBROUTINE ZCSDTS( M, P, Q, X, XF, LDX, U1, LDU1, U2, LDU2, V1T,
$ LDV1T, V2T, LDV2T, THETA, IWORK, WORK, LWORK,
$ RWORK, RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDX, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION RESULT( 9 ), RWORK( * ), THETA( * )
COMPLEX*16 U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
$ V2T( LDV2T, * ), WORK( LWORK ), X( LDX, * ),
$ XF( LDX, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION PIOVER2, REALONE, REALZERO
PARAMETER ( PIOVER2 = 1.57079632679489662D0,
$ REALONE = 1.0D0, REALZERO = 0.0D0 )
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = (0.0D0,0.0D0), ONE = (1.0D0,0.0D0) )
* ..
* .. Local Scalars ..
INTEGER I, INFO, R
DOUBLE PRECISION EPS2, RESID, ULP, ULPINV
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHE
EXTERNAL DLAMCH, ZLANGE, ZLANHE
* ..
* .. External Subroutines ..
EXTERNAL ZGEMM, ZLACPY, ZLASET, ZUNCSD, ZHERK
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL, MAX, MIN
* ..
* .. Executable Statements ..
*
ULP = DLAMCH( 'Precision' )
ULPINV = REALONE / ULP
CALL ZLASET( 'Full', M, M, ZERO, ONE, WORK, LDX )
CALL ZHERK( 'Upper', 'Conjugate transpose', M, M, -REALONE,
$ X, LDX, REALONE, WORK, LDX )
IF (M.GT.0) THEN
EPS2 = MAX( ULP,
$ ZLANGE( '1', M, M, WORK, LDX, RWORK ) / DBLE( M ) )
ELSE
EPS2 = ULP
END IF
R = MIN( P, M-P, Q, M-Q )
*
* Copy the matrix X to the array XF.
*
CALL ZLACPY( 'Full', M, M, X, LDX, XF, LDX )
*
* Compute the CSD
*
CALL ZUNCSD( 'Y', 'Y', 'Y', 'Y', 'N', 'D', M, P, Q, XF(1,1), LDX,
$ XF(1,Q+1), LDX, XF(P+1,1), LDX, XF(P+1,Q+1), LDX,
$ THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T,
$ WORK, LWORK, RWORK, 17*(R+2), IWORK, INFO )
*
* Compute X := diag(U1,U2)'*X*diag(V1,V2) - [D11 D12; D21 D22]
*
CALL ZGEMM( 'No transpose', 'Conjugate transpose', P, Q, Q, ONE,
$ X, LDX, V1T, LDV1T, ZERO, WORK, LDX )
*
CALL ZGEMM( 'Conjugate transpose', 'No transpose', P, Q, P, ONE,
$ U1, LDU1, WORK, LDX, ZERO, X, LDX )
*
DO I = 1, MIN(P,Q)-R
X(I,I) = X(I,I) - ONE
END DO
DO I = 1, R
X(MIN(P,Q)-R+I,MIN(P,Q)-R+I) =
$ X(MIN(P,Q)-R+I,MIN(P,Q)-R+I) - DCMPLX( COS(THETA(I)),
$ 0.0D0 )
END DO
*
CALL ZGEMM( 'No transpose', 'Conjugate transpose', P, M-Q, M-Q,
$ ONE, X(1,Q+1), LDX, V2T, LDV2T, ZERO, WORK, LDX )
*
CALL ZGEMM( 'Conjugate transpose', 'No transpose', P, M-Q, P,
$ ONE, U1, LDU1, WORK, LDX, ZERO, X(1,Q+1), LDX )
*
DO I = 1, MIN(P,M-Q)-R
X(P-I+1,M-I+1) = X(P-I+1,M-I+1) + ONE
END DO
DO I = 1, R
X(P-(MIN(P,M-Q)-R)+1-I,M-(MIN(P,M-Q)-R)+1-I) =
$ X(P-(MIN(P,M-Q)-R)+1-I,M-(MIN(P,M-Q)-R)+1-I) +
$ DCMPLX( SIN(THETA(R-I+1)), 0.0D0 )
END DO
*
CALL ZGEMM( 'No transpose', 'Conjugate transpose', M-P, Q, Q, ONE,
$ X(P+1,1), LDX, V1T, LDV1T, ZERO, WORK, LDX )
*
CALL ZGEMM( 'Conjugate transpose', 'No transpose', M-P, Q, M-P,
$ ONE, U2, LDU2, WORK, LDX, ZERO, X(P+1,1), LDX )
*
DO I = 1, MIN(M-P,Q)-R
X(M-I+1,Q-I+1) = X(M-I+1,Q-I+1) - ONE
END DO
DO I = 1, R
X(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) =
$ X(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) -
$ DCMPLX( SIN(THETA(R-I+1)), 0.0D0 )
END DO
*
CALL ZGEMM( 'No transpose', 'Conjugate transpose', M-P, M-Q, M-Q,
$ ONE, X(P+1,Q+1), LDX, V2T, LDV2T, ZERO, WORK, LDX )
*
CALL ZGEMM( 'Conjugate transpose', 'No transpose', M-P, M-Q, M-P,
$ ONE, U2, LDU2, WORK, LDX, ZERO, X(P+1,Q+1), LDX )
*
DO I = 1, MIN(M-P,M-Q)-R
X(P+I,Q+I) = X(P+I,Q+I) - ONE
END DO
DO I = 1, R
X(P+(MIN(M-P,M-Q)-R)+I,Q+(MIN(M-P,M-Q)-R)+I) =
$ X(P+(MIN(M-P,M-Q)-R)+I,Q+(MIN(M-P,M-Q)-R)+I) -
$ DCMPLX( COS(THETA(I)), 0.0D0 )
END DO
*
* Compute norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) .
*
RESID = ZLANGE( '1', P, Q, X, LDX, RWORK )
RESULT( 1 ) = ( RESID / REAL(MAX(1,P,Q)) ) / EPS2
*
* Compute norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 ) .
*
RESID = ZLANGE( '1', P, M-Q, X(1,Q+1), LDX, RWORK )
RESULT( 2 ) = ( RESID / REAL(MAX(1,P,M-Q)) ) / EPS2
*
* Compute norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) .
*
RESID = ZLANGE( '1', M-P, Q, X(P+1,1), LDX, RWORK )
RESULT( 3 ) = ( RESID / REAL(MAX(1,M-P,Q)) ) / EPS2
*
* Compute norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 ) .
*
RESID = ZLANGE( '1', M-P, M-Q, X(P+1,Q+1), LDX, RWORK )
RESULT( 4 ) = ( RESID / REAL(MAX(1,M-P,M-Q)) ) / EPS2
*
* Compute I - U1'*U1
*
CALL ZLASET( 'Full', P, P, ZERO, ONE, WORK, LDU1 )
CALL ZHERK( 'Upper', 'Conjugate transpose', P, P, -REALONE,
$ U1, LDU1, REALONE, WORK, LDU1 )
*
* Compute norm( I - U'*U ) / ( MAX(1,P) * ULP ) .
*
RESID = ZLANHE( '1', 'Upper', P, WORK, LDU1, RWORK )
RESULT( 5 ) = ( RESID / REAL(MAX(1,P)) ) / ULP
*
* Compute I - U2'*U2
*
CALL ZLASET( 'Full', M-P, M-P, ZERO, ONE, WORK, LDU2 )
CALL ZHERK( 'Upper', 'Conjugate transpose', M-P, M-P, -REALONE,
$ U2, LDU2, REALONE, WORK, LDU2 )
*
* Compute norm( I - U2'*U2 ) / ( MAX(1,M-P) * ULP ) .
*
RESID = ZLANHE( '1', 'Upper', M-P, WORK, LDU2, RWORK )
RESULT( 6 ) = ( RESID / REAL(MAX(1,M-P)) ) / ULP
*
* Compute I - V1T*V1T'
*
CALL ZLASET( 'Full', Q, Q, ZERO, ONE, WORK, LDV1T )
CALL ZHERK( 'Upper', 'No transpose', Q, Q, -REALONE,
$ V1T, LDV1T, REALONE, WORK, LDV1T )
*
* Compute norm( I - V1T*V1T' ) / ( MAX(1,Q) * ULP ) .
*
RESID = ZLANHE( '1', 'Upper', Q, WORK, LDV1T, RWORK )
RESULT( 7 ) = ( RESID / REAL(MAX(1,Q)) ) / ULP
*
* Compute I - V2T*V2T'
*
CALL ZLASET( 'Full', M-Q, M-Q, ZERO, ONE, WORK, LDV2T )
CALL ZHERK( 'Upper', 'No transpose', M-Q, M-Q, -REALONE,
$ V2T, LDV2T, REALONE, WORK, LDV2T )
*
* Compute norm( I - V2T*V2T' ) / ( MAX(1,M-Q) * ULP ) .
*
RESID = ZLANHE( '1', 'Upper', M-Q, WORK, LDV2T, RWORK )
RESULT( 8 ) = ( RESID / REAL(MAX(1,M-Q)) ) / ULP
*
* Check sorting
*
RESULT(9) = REALZERO
DO I = 1, R
IF( THETA(I).LT.REALZERO .OR. THETA(I).GT.PIOVER2 ) THEN
RESULT(9) = ULPINV
END IF
IF( I.GT.1) THEN
IF ( THETA(I).LT.THETA(I-1) ) THEN
RESULT(9) = ULPINV
END IF
END IF
END DO
*
RETURN
*
* End of ZCSDTS
*
END
|