1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
*> \brief \b ZGET22
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, W,
* WORK, RWORK, RESULT )
*
* .. Scalar Arguments ..
* CHARACTER TRANSA, TRANSE, TRANSW
* INTEGER LDA, LDE, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION RESULT( 2 ), RWORK( * )
* COMPLEX*16 A( LDA, * ), E( LDE, * ), W( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZGET22 does an eigenvector check.
*>
*> The basic test is:
*>
*> RESULT(1) = | A E - E W | / ( |A| |E| ulp )
*>
*> using the 1-norm. It also tests the normalization of E:
*>
*> RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
*> j
*>
*> where E(j) is the j-th eigenvector, and m-norm is the max-norm of a
*> vector. The max-norm of a complex n-vector x in this case is the
*> maximum of |re(x(i)| + |im(x(i)| over i = 1, ..., n.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANSA
*> \verbatim
*> TRANSA is CHARACTER*1
*> Specifies whether or not A is transposed.
*> = 'N': No transpose
*> = 'T': Transpose
*> = 'C': Conjugate transpose
*> \endverbatim
*>
*> \param[in] TRANSE
*> \verbatim
*> TRANSE is CHARACTER*1
*> Specifies whether or not E is transposed.
*> = 'N': No transpose, eigenvectors are in columns of E
*> = 'T': Transpose, eigenvectors are in rows of E
*> = 'C': Conjugate transpose, eigenvectors are in rows of E
*> \endverbatim
*>
*> \param[in] TRANSW
*> \verbatim
*> TRANSW is CHARACTER*1
*> Specifies whether or not W is transposed.
*> = 'N': No transpose
*> = 'T': Transpose, same as TRANSW = 'N'
*> = 'C': Conjugate transpose, use -WI(j) instead of WI(j)
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> The matrix whose eigenvectors are in E.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is COMPLEX*16 array, dimension (LDE,N)
*> The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors
*> are stored in the columns of E, if TRANSE = 'T' or 'C', the
*> eigenvectors are stored in the rows of E.
*> \endverbatim
*>
*> \param[in] LDE
*> \verbatim
*> LDE is INTEGER
*> The leading dimension of the array E. LDE >= max(1,N).
*> \endverbatim
*>
*> \param[in] W
*> \verbatim
*> W is COMPLEX*16 array, dimension (N)
*> The eigenvalues of A.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (N*N)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION array, dimension (2)
*> RESULT(1) = | A E - E W | / ( |A| |E| ulp )
*> RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_eig
*
* =====================================================================
SUBROUTINE ZGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, W,
$ WORK, RWORK, RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER TRANSA, TRANSE, TRANSW
INTEGER LDA, LDE, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION RESULT( 2 ), RWORK( * )
COMPLEX*16 A( LDA, * ), E( LDE, * ), W( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
$ CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
CHARACTER NORMA, NORME
INTEGER ITRNSE, ITRNSW, J, JCOL, JOFF, JROW, JVEC
DOUBLE PRECISION ANORM, ENORM, ENRMAX, ENRMIN, ERRNRM, TEMP1,
$ ULP, UNFL
COMPLEX*16 WTEMP
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, ZLANGE
EXTERNAL LSAME, DLAMCH, ZLANGE
* ..
* .. External Subroutines ..
EXTERNAL ZGEMM, ZLASET
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCONJG, DIMAG, MAX, MIN
* ..
* .. Executable Statements ..
*
* Initialize RESULT (in case N=0)
*
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
IF( N.LE.0 )
$ RETURN
*
UNFL = DLAMCH( 'Safe minimum' )
ULP = DLAMCH( 'Precision' )
*
ITRNSE = 0
ITRNSW = 0
NORMA = 'O'
NORME = 'O'
*
IF( LSAME( TRANSA, 'T' ) .OR. LSAME( TRANSA, 'C' ) ) THEN
NORMA = 'I'
END IF
*
IF( LSAME( TRANSE, 'T' ) ) THEN
ITRNSE = 1
NORME = 'I'
ELSE IF( LSAME( TRANSE, 'C' ) ) THEN
ITRNSE = 2
NORME = 'I'
END IF
*
IF( LSAME( TRANSW, 'C' ) ) THEN
ITRNSW = 1
END IF
*
* Normalization of E:
*
ENRMIN = ONE / ULP
ENRMAX = ZERO
IF( ITRNSE.EQ.0 ) THEN
DO 20 JVEC = 1, N
TEMP1 = ZERO
DO 10 J = 1, N
TEMP1 = MAX( TEMP1, ABS( DBLE( E( J, JVEC ) ) )+
$ ABS( DIMAG( E( J, JVEC ) ) ) )
10 CONTINUE
ENRMIN = MIN( ENRMIN, TEMP1 )
ENRMAX = MAX( ENRMAX, TEMP1 )
20 CONTINUE
ELSE
DO 30 JVEC = 1, N
RWORK( JVEC ) = ZERO
30 CONTINUE
*
DO 50 J = 1, N
DO 40 JVEC = 1, N
RWORK( JVEC ) = MAX( RWORK( JVEC ),
$ ABS( DBLE( E( JVEC, J ) ) )+
$ ABS( DIMAG( E( JVEC, J ) ) ) )
40 CONTINUE
50 CONTINUE
*
DO 60 JVEC = 1, N
ENRMIN = MIN( ENRMIN, RWORK( JVEC ) )
ENRMAX = MAX( ENRMAX, RWORK( JVEC ) )
60 CONTINUE
END IF
*
* Norm of A:
*
ANORM = MAX( ZLANGE( NORMA, N, N, A, LDA, RWORK ), UNFL )
*
* Norm of E:
*
ENORM = MAX( ZLANGE( NORME, N, N, E, LDE, RWORK ), ULP )
*
* Norm of error:
*
* Error = AE - EW
*
CALL ZLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
*
JOFF = 0
DO 100 JCOL = 1, N
IF( ITRNSW.EQ.0 ) THEN
WTEMP = W( JCOL )
ELSE
WTEMP = DCONJG( W( JCOL ) )
END IF
*
IF( ITRNSE.EQ.0 ) THEN
DO 70 JROW = 1, N
WORK( JOFF+JROW ) = E( JROW, JCOL )*WTEMP
70 CONTINUE
ELSE IF( ITRNSE.EQ.1 ) THEN
DO 80 JROW = 1, N
WORK( JOFF+JROW ) = E( JCOL, JROW )*WTEMP
80 CONTINUE
ELSE
DO 90 JROW = 1, N
WORK( JOFF+JROW ) = DCONJG( E( JCOL, JROW ) )*WTEMP
90 CONTINUE
END IF
JOFF = JOFF + N
100 CONTINUE
*
CALL ZGEMM( TRANSA, TRANSE, N, N, N, CONE, A, LDA, E, LDE, -CONE,
$ WORK, N )
*
ERRNRM = ZLANGE( 'One', N, N, WORK, N, RWORK ) / ENORM
*
* Compute RESULT(1) (avoiding under/overflow)
*
IF( ANORM.GT.ERRNRM ) THEN
RESULT( 1 ) = ( ERRNRM / ANORM ) / ULP
ELSE
IF( ANORM.LT.ONE ) THEN
RESULT( 1 ) = ( MIN( ERRNRM, ANORM ) / ANORM ) / ULP
ELSE
RESULT( 1 ) = MIN( ERRNRM / ANORM, ONE ) / ULP
END IF
END IF
*
* Compute RESULT(2) : the normalization error in E.
*
RESULT( 2 ) = MAX( ABS( ENRMAX-ONE ), ABS( ENRMIN-ONE ) ) /
$ ( DBLE( N )*ULP )
*
RETURN
*
* End of ZGET22
*
END
|