1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
*> \brief \b ZGET51
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK,
* RWORK, RESULT )
*
* .. Scalar Arguments ..
* INTEGER ITYPE, LDA, LDB, LDU, LDV, N
* DOUBLE PRECISION RESULT
* ..
* .. Array Arguments ..
* DOUBLE PRECISION RWORK( * )
* COMPLEX*16 A( LDA, * ), B( LDB, * ), U( LDU, * ),
* $ V( LDV, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZGET51 generally checks a decomposition of the form
*>
*> A = U B VC>
*> where * means conjugate transpose and U and V are unitary.
*>
*> Specifically, if ITYPE=1
*>
*> RESULT = | A - U B V* | / ( |A| n ulp )
*>
*> If ITYPE=2, then:
*>
*> RESULT = | A - B | / ( |A| n ulp )
*>
*> If ITYPE=3, then:
*>
*> RESULT = | I - UU* | / ( n ulp )
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ITYPE
*> \verbatim
*> ITYPE is INTEGER
*> Specifies the type of tests to be performed.
*> =1: RESULT = | A - U B V* | / ( |A| n ulp )
*> =2: RESULT = | A - B | / ( |A| n ulp )
*> =3: RESULT = | I - UU* | / ( n ulp )
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The size of the matrix. If it is zero, ZGET51 does nothing.
*> It must be at least zero.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA, N)
*> The original (unfactored) matrix.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A. It must be at least 1
*> and at least N.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (LDB, N)
*> The factored matrix.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of B. It must be at least 1
*> and at least N.
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*> U is COMPLEX*16 array, dimension (LDU, N)
*> The unitary matrix on the left-hand side in the
*> decomposition.
*> Not referenced if ITYPE=2
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> The leading dimension of U. LDU must be at least N and
*> at least 1.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*> V is COMPLEX*16 array, dimension (LDV, N)
*> The unitary matrix on the left-hand side in the
*> decomposition.
*> Not referenced if ITYPE=2
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*> LDV is INTEGER
*> The leading dimension of V. LDV must be at least N and
*> at least 1.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (2*N**2)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION
*> The values computed by the test specified by ITYPE. The
*> value is currently limited to 1/ulp, to avoid overflow.
*> Errors are flagged by RESULT=10/ulp.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_eig
*
* =====================================================================
SUBROUTINE ZGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK,
$ RWORK, RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER ITYPE, LDA, LDB, LDU, LDV, N
DOUBLE PRECISION RESULT
* ..
* .. Array Arguments ..
DOUBLE PRECISION RWORK( * )
COMPLEX*16 A( LDA, * ), B( LDB, * ), U( LDU, * ),
$ V( LDV, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TEN
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 10.0D+0 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
$ CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER JCOL, JDIAG, JROW
DOUBLE PRECISION ANORM, ULP, UNFL, WNORM
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, ZLANGE
EXTERNAL DLAMCH, ZLANGE
* ..
* .. External Subroutines ..
EXTERNAL ZGEMM, ZLACPY
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
RESULT = ZERO
IF( N.LE.0 )
$ RETURN
*
* Constants
*
UNFL = DLAMCH( 'Safe minimum' )
ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
*
* Some Error Checks
*
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
RESULT = TEN / ULP
RETURN
END IF
*
IF( ITYPE.LE.2 ) THEN
*
* Tests scaled by the norm(A)
*
ANORM = MAX( ZLANGE( '1', N, N, A, LDA, RWORK ), UNFL )
*
IF( ITYPE.EQ.1 ) THEN
*
* ITYPE=1: Compute W = A - UBV'
*
CALL ZLACPY( ' ', N, N, A, LDA, WORK, N )
CALL ZGEMM( 'N', 'N', N, N, N, CONE, U, LDU, B, LDB, CZERO,
$ WORK( N**2+1 ), N )
*
CALL ZGEMM( 'N', 'C', N, N, N, -CONE, WORK( N**2+1 ), N, V,
$ LDV, CONE, WORK, N )
*
ELSE
*
* ITYPE=2: Compute W = A - B
*
CALL ZLACPY( ' ', N, N, B, LDB, WORK, N )
*
DO 20 JCOL = 1, N
DO 10 JROW = 1, N
WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
$ - A( JROW, JCOL )
10 CONTINUE
20 CONTINUE
END IF
*
* Compute norm(W)/ ( ulp*norm(A) )
*
WNORM = ZLANGE( '1', N, N, WORK, N, RWORK )
*
IF( ANORM.GT.WNORM ) THEN
RESULT = ( WNORM / ANORM ) / ( N*ULP )
ELSE
IF( ANORM.LT.ONE ) THEN
RESULT = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
ELSE
RESULT = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
END IF
END IF
*
ELSE
*
* Tests not scaled by norm(A)
*
* ITYPE=3: Compute UU' - I
*
CALL ZGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO,
$ WORK, N )
*
DO 30 JDIAG = 1, N
WORK( ( N+1 )*( JDIAG-1 )+1 ) = WORK( ( N+1 )*( JDIAG-1 )+
$ 1 ) - CONE
30 CONTINUE
*
RESULT = MIN( ZLANGE( '1', N, N, WORK, N, RWORK ),
$ DBLE( N ) ) / ( N*ULP )
END IF
*
RETURN
*
* End of ZGET51
*
END
|