1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
*> \brief \b ZGLMTS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, D, DF, X, U,
* WORK, LWORK, RWORK, RESULT )
*
* .. Scalar Arguments ..
* INTEGER LDA, LDB, LWORK, M, N, P
* DOUBLE PRECISION RESULT
* ..
* .. Array Arguments ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZGLMTS tests ZGGGLM - a subroutine for solving the generalized
*> linear model problem.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows of the matrices A and B. N >= 0.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of columns of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*> P is INTEGER
*> The number of columns of the matrix B. P >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,M)
*> The N-by-M matrix A.
*> \endverbatim
*>
*> \param[out] AF
*> \verbatim
*> AF is COMPLEX*16 array, dimension (LDA,M)
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the arrays A, AF. LDA >= max(M,N).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (LDB,P)
*> The N-by-P matrix A.
*> \endverbatim
*>
*> \param[out] BF
*> \verbatim
*> BF is COMPLEX*16 array, dimension (LDB,P)
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the arrays B, BF. LDB >= max(P,N).
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is COMPLEX*16 array, dimension( N )
*> On input, the left hand side of the GLM.
*> \endverbatim
*>
*> \param[out] DF
*> \verbatim
*> DF is COMPLEX*16 array, dimension( N )
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX*16 array, dimension( M )
*> solution vector X in the GLM problem.
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*> U is COMPLEX*16 array, dimension( P )
*> solution vector U in the GLM problem.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION
*> The test ratio:
*> norm( d - A*x - B*u )
*> RESULT = -----------------------------------------
*> (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_eig
*
* =====================================================================
SUBROUTINE ZGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, D, DF, X, U,
$ WORK, LWORK, RWORK, RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDA, LDB, LWORK, M, N, P
DOUBLE PRECISION RESULT
* ..
* .. Array Arguments ..
*
* ====================================================================
*
DOUBLE PRECISION RWORK( * )
COMPLEX*16 A( LDA, * ), AF( LDA, * ), B( LDB, * ),
$ BF( LDB, * ), D( * ), DF( * ), U( * ),
$ WORK( LWORK ), X( * )
* ..
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D+0 )
COMPLEX*16 CONE
PARAMETER ( CONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER INFO
DOUBLE PRECISION ANORM, BNORM, DNORM, EPS, UNFL, XNORM, YNORM
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DZASUM, ZLANGE
EXTERNAL DLAMCH, DZASUM, ZLANGE
* ..
* .. External Subroutines ..
*
EXTERNAL ZCOPY, ZGEMV, ZGGGLM, ZLACPY
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
EPS = DLAMCH( 'Epsilon' )
UNFL = DLAMCH( 'Safe minimum' )
ANORM = MAX( ZLANGE( '1', N, M, A, LDA, RWORK ), UNFL )
BNORM = MAX( ZLANGE( '1', N, P, B, LDB, RWORK ), UNFL )
*
* Copy the matrices A and B to the arrays AF and BF,
* and the vector D the array DF.
*
CALL ZLACPY( 'Full', N, M, A, LDA, AF, LDA )
CALL ZLACPY( 'Full', N, P, B, LDB, BF, LDB )
CALL ZCOPY( N, D, 1, DF, 1 )
*
* Solve GLM problem
*
CALL ZGGGLM( N, M, P, AF, LDA, BF, LDB, DF, X, U, WORK, LWORK,
$ INFO )
*
* Test the residual for the solution of LSE
*
* norm( d - A*x - B*u )
* RESULT = -----------------------------------------
* (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
*
CALL ZCOPY( N, D, 1, DF, 1 )
CALL ZGEMV( 'No transpose', N, M, -CONE, A, LDA, X, 1, CONE, DF,
$ 1 )
*
CALL ZGEMV( 'No transpose', N, P, -CONE, B, LDB, U, 1, CONE, DF,
$ 1 )
*
DNORM = DZASUM( N, DF, 1 )
XNORM = DZASUM( M, X, 1 ) + DZASUM( P, U, 1 )
YNORM = ANORM + BNORM
*
IF( XNORM.LE.ZERO ) THEN
RESULT = ZERO
ELSE
RESULT = ( ( DNORM / YNORM ) / XNORM ) / EPS
END IF
*
RETURN
*
* End of ZGLMTS
*
END
|