1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
*> \brief \b ZGQRTS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZGQRTS( N, M, P, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
* BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
*
* .. Scalar Arguments ..
* INTEGER LDA, LDB, LWORK, M, N, P
* ..
* .. Array Arguments ..
* DOUBLE PRECISION RESULT( 4 ), RWORK( * )
* COMPLEX*16 A( LDA, * ), AF( LDA, * ), B( LDB, * ),
* $ BF( LDB, * ), BWK( LDB, * ), Q( LDA, * ),
* $ R( LDA, * ), T( LDB, * ), TAUA( * ), TAUB( * ),
* $ WORK( LWORK ), Z( LDB, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZGQRTS tests ZGGQRF, which computes the GQR factorization of an
*> N-by-M matrix A and a N-by-P matrix B: A = Q*R and B = Q*T*Z.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows of the matrices A and B. N >= 0.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of columns of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*> P is INTEGER
*> The number of columns of the matrix B. P >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,M)
*> The N-by-M matrix A.
*> \endverbatim
*>
*> \param[out] AF
*> \verbatim
*> AF is COMPLEX*16 array, dimension (LDA,N)
*> Details of the GQR factorization of A and B, as returned
*> by ZGGQRF, see CGGQRF for further details.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*> Q is COMPLEX*16 array, dimension (LDA,N)
*> The M-by-M unitary matrix Q.
*> \endverbatim
*>
*> \param[out] R
*> \verbatim
*> R is COMPLEX*16 array, dimension (LDA,MAX(M,N))
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the arrays A, AF, R and Q.
*> LDA >= max(M,N).
*> \endverbatim
*>
*> \param[out] TAUA
*> \verbatim
*> TAUA is COMPLEX*16 array, dimension (min(M,N))
*> The scalar factors of the elementary reflectors, as returned
*> by ZGGQRF.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (LDB,P)
*> On entry, the N-by-P matrix A.
*> \endverbatim
*>
*> \param[out] BF
*> \verbatim
*> BF is COMPLEX*16 array, dimension (LDB,N)
*> Details of the GQR factorization of A and B, as returned
*> by ZGGQRF, see CGGQRF for further details.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*> Z is COMPLEX*16 array, dimension (LDB,P)
*> The P-by-P unitary matrix Z.
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*> T is COMPLEX*16 array, dimension (LDB,max(P,N))
*> \endverbatim
*>
*> \param[out] BWK
*> \verbatim
*> BWK is COMPLEX*16 array, dimension (LDB,N)
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the arrays B, BF, Z and T.
*> LDB >= max(P,N).
*> \endverbatim
*>
*> \param[out] TAUB
*> \verbatim
*> TAUB is COMPLEX*16 array, dimension (min(P,N))
*> The scalar factors of the elementary reflectors, as returned
*> by DGGRQF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK, LWORK >= max(N,M,P)**2.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (max(N,M,P))
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION array, dimension (4)
*> The test ratios:
*> RESULT(1) = norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP)
*> RESULT(2) = norm( T*Z - Q'*B ) / (MAX(P,N)*norm(B)*ULP)
*> RESULT(3) = norm( I - Q'*Q ) / ( M*ULP )
*> RESULT(4) = norm( I - Z'*Z ) / ( P*ULP )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_eig
*
* =====================================================================
SUBROUTINE ZGQRTS( N, M, P, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
$ BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDA, LDB, LWORK, M, N, P
* ..
* .. Array Arguments ..
DOUBLE PRECISION RESULT( 4 ), RWORK( * )
COMPLEX*16 A( LDA, * ), AF( LDA, * ), B( LDB, * ),
$ BF( LDB, * ), BWK( LDB, * ), Q( LDA, * ),
$ R( LDA, * ), T( LDB, * ), TAUA( * ), TAUB( * ),
$ WORK( LWORK ), Z( LDB, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
$ CONE = ( 1.0D+0, 0.0D+0 ) )
COMPLEX*16 CROGUE
PARAMETER ( CROGUE = ( -1.0D+10, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER INFO
DOUBLE PRECISION ANORM, BNORM, RESID, ULP, UNFL
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHE
EXTERNAL DLAMCH, ZLANGE, ZLANHE
* ..
* .. External Subroutines ..
EXTERNAL ZGEMM, ZGGQRF, ZHERK, ZLACPY, ZLASET, ZUNGQR,
$ ZUNGRQ
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
ULP = DLAMCH( 'Precision' )
UNFL = DLAMCH( 'Safe minimum' )
*
* Copy the matrix A to the array AF.
*
CALL ZLACPY( 'Full', N, M, A, LDA, AF, LDA )
CALL ZLACPY( 'Full', N, P, B, LDB, BF, LDB )
*
ANORM = MAX( ZLANGE( '1', N, M, A, LDA, RWORK ), UNFL )
BNORM = MAX( ZLANGE( '1', N, P, B, LDB, RWORK ), UNFL )
*
* Factorize the matrices A and B in the arrays AF and BF.
*
CALL ZGGQRF( N, M, P, AF, LDA, TAUA, BF, LDB, TAUB, WORK, LWORK,
$ INFO )
*
* Generate the N-by-N matrix Q
*
CALL ZLASET( 'Full', N, N, CROGUE, CROGUE, Q, LDA )
CALL ZLACPY( 'Lower', N-1, M, AF( 2, 1 ), LDA, Q( 2, 1 ), LDA )
CALL ZUNGQR( N, N, MIN( N, M ), Q, LDA, TAUA, WORK, LWORK, INFO )
*
* Generate the P-by-P matrix Z
*
CALL ZLASET( 'Full', P, P, CROGUE, CROGUE, Z, LDB )
IF( N.LE.P ) THEN
IF( N.GT.0 .AND. N.LT.P )
$ CALL ZLACPY( 'Full', N, P-N, BF, LDB, Z( P-N+1, 1 ), LDB )
IF( N.GT.1 )
$ CALL ZLACPY( 'Lower', N-1, N-1, BF( 2, P-N+1 ), LDB,
$ Z( P-N+2, P-N+1 ), LDB )
ELSE
IF( P.GT.1 )
$ CALL ZLACPY( 'Lower', P-1, P-1, BF( N-P+2, 1 ), LDB,
$ Z( 2, 1 ), LDB )
END IF
CALL ZUNGRQ( P, P, MIN( N, P ), Z, LDB, TAUB, WORK, LWORK, INFO )
*
* Copy R
*
CALL ZLASET( 'Full', N, M, CZERO, CZERO, R, LDA )
CALL ZLACPY( 'Upper', N, M, AF, LDA, R, LDA )
*
* Copy T
*
CALL ZLASET( 'Full', N, P, CZERO, CZERO, T, LDB )
IF( N.LE.P ) THEN
CALL ZLACPY( 'Upper', N, N, BF( 1, P-N+1 ), LDB, T( 1, P-N+1 ),
$ LDB )
ELSE
CALL ZLACPY( 'Full', N-P, P, BF, LDB, T, LDB )
CALL ZLACPY( 'Upper', P, P, BF( N-P+1, 1 ), LDB, T( N-P+1, 1 ),
$ LDB )
END IF
*
* Compute R - Q'*A
*
CALL ZGEMM( 'Conjugate transpose', 'No transpose', N, M, N, -CONE,
$ Q, LDA, A, LDA, CONE, R, LDA )
*
* Compute norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP ) .
*
RESID = ZLANGE( '1', N, M, R, LDA, RWORK )
IF( ANORM.GT.ZERO ) THEN
RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, M, N ) ) ) / ANORM ) /
$ ULP
ELSE
RESULT( 1 ) = ZERO
END IF
*
* Compute T*Z - Q'*B
*
CALL ZGEMM( 'No Transpose', 'No transpose', N, P, P, CONE, T, LDB,
$ Z, LDB, CZERO, BWK, LDB )
CALL ZGEMM( 'Conjugate transpose', 'No transpose', N, P, N, -CONE,
$ Q, LDA, B, LDB, CONE, BWK, LDB )
*
* Compute norm( T*Z - Q'*B ) / ( MAX(P,N)*norm(A)*ULP ) .
*
RESID = ZLANGE( '1', N, P, BWK, LDB, RWORK )
IF( BNORM.GT.ZERO ) THEN
RESULT( 2 ) = ( ( RESID / DBLE( MAX( 1, P, N ) ) ) / BNORM ) /
$ ULP
ELSE
RESULT( 2 ) = ZERO
END IF
*
* Compute I - Q'*Q
*
CALL ZLASET( 'Full', N, N, CZERO, CONE, R, LDA )
CALL ZHERK( 'Upper', 'Conjugate transpose', N, N, -ONE, Q, LDA,
$ ONE, R, LDA )
*
* Compute norm( I - Q'*Q ) / ( N * ULP ) .
*
RESID = ZLANHE( '1', 'Upper', N, R, LDA, RWORK )
RESULT( 3 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / ULP
*
* Compute I - Z'*Z
*
CALL ZLASET( 'Full', P, P, CZERO, CONE, T, LDB )
CALL ZHERK( 'Upper', 'Conjugate transpose', P, P, -ONE, Z, LDB,
$ ONE, T, LDB )
*
* Compute norm( I - Z'*Z ) / ( P*ULP ) .
*
RESID = ZLANHE( '1', 'Upper', P, T, LDB, RWORK )
RESULT( 4 ) = ( RESID / DBLE( MAX( 1, P ) ) ) / ULP
*
RETURN
*
* End of ZGQRTS
*
END
|