1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
*> \brief \b ZHET22
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZHET22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
* V, LDV, TAU, WORK, RWORK, RESULT )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER ITYPE, KBAND, LDA, LDU, LDV, M, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION D( * ), E( * ), RESULT( 2 ), RWORK( * )
* COMPLEX*16 A( LDA, * ), TAU( * ), U( LDU, * ),
* $ V( LDV, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZHET22 generally checks a decomposition of the form
*>
*> A U = U S
*>
*> where A is complex Hermitian, the columns of U are orthonormal,
*> and S is diagonal (if KBAND=0) or symmetric tridiagonal (if
*> KBAND=1). If ITYPE=1, then U is represented as a dense matrix,
*> otherwise the U is expressed as a product of Householder
*> transformations, whose vectors are stored in the array "V" and
*> whose scaling constants are in "TAU"; we shall use the letter
*> "V" to refer to the product of Householder transformations
*> (which should be equal to U).
*>
*> Specifically, if ITYPE=1, then:
*>
*> RESULT(1) = | U' A U - S | / ( |A| m ulp ) *andC> RESULT(2) = | I - U'U | / ( m ulp )
*> \endverbatim
*
* Arguments:
* ==========
*
*> \verbatim
*> ITYPE INTEGER
*> Specifies the type of tests to be performed.
*> 1: U expressed as a dense orthogonal matrix:
*> RESULT(1) = | A - U S U' | / ( |A| n ulp ) *andC> RESULT(2) = | I - UU' | / ( n ulp )
*>
*> UPLO CHARACTER
*> If UPLO='U', the upper triangle of A will be used and the
*> (strictly) lower triangle will not be referenced. If
*> UPLO='L', the lower triangle of A will be used and the
*> (strictly) upper triangle will not be referenced.
*> Not modified.
*>
*> N INTEGER
*> The size of the matrix. If it is zero, ZHET22 does nothing.
*> It must be at least zero.
*> Not modified.
*>
*> M INTEGER
*> The number of columns of U. If it is zero, ZHET22 does
*> nothing. It must be at least zero.
*> Not modified.
*>
*> KBAND INTEGER
*> The bandwidth of the matrix. It may only be zero or one.
*> If zero, then S is diagonal, and E is not referenced. If
*> one, then S is symmetric tri-diagonal.
*> Not modified.
*>
*> A COMPLEX*16 array, dimension (LDA , N)
*> The original (unfactored) matrix. It is assumed to be
*> symmetric, and only the upper (UPLO='U') or only the lower
*> (UPLO='L') will be referenced.
*> Not modified.
*>
*> LDA INTEGER
*> The leading dimension of A. It must be at least 1
*> and at least N.
*> Not modified.
*>
*> D DOUBLE PRECISION array, dimension (N)
*> The diagonal of the (symmetric tri-) diagonal matrix.
*> Not modified.
*>
*> E DOUBLE PRECISION array, dimension (N)
*> The off-diagonal of the (symmetric tri-) diagonal matrix.
*> E(1) is ignored, E(2) is the (1,2) and (2,1) element, etc.
*> Not referenced if KBAND=0.
*> Not modified.
*>
*> U COMPLEX*16 array, dimension (LDU, N)
*> If ITYPE=1, this contains the orthogonal matrix in
*> the decomposition, expressed as a dense matrix.
*> Not modified.
*>
*> LDU INTEGER
*> The leading dimension of U. LDU must be at least N and
*> at least 1.
*> Not modified.
*>
*> V COMPLEX*16 array, dimension (LDV, N)
*> If ITYPE=2 or 3, the lower triangle of this array contains
*> the Householder vectors used to describe the orthogonal
*> matrix in the decomposition. If ITYPE=1, then it is not
*> referenced.
*> Not modified.
*>
*> LDV INTEGER
*> The leading dimension of V. LDV must be at least N and
*> at least 1.
*> Not modified.
*>
*> TAU COMPLEX*16 array, dimension (N)
*> If ITYPE >= 2, then TAU(j) is the scalar factor of
*> v(j) v(j)' in the Householder transformation H(j) of
*> the product U = H(1)...H(n-2)
*> If ITYPE < 2, then TAU is not referenced.
*> Not modified.
*>
*> WORK COMPLEX*16 array, dimension (2*N**2)
*> Workspace.
*> Modified.
*>
*> RWORK DOUBLE PRECISION array, dimension (N)
*> Workspace.
*> Modified.
*>
*> RESULT DOUBLE PRECISION array, dimension (2)
*> The values computed by the two tests described above. The
*> values are currently limited to 1/ulp, to avoid overflow.
*> RESULT(1) is always modified. RESULT(2) is modified only
*> if LDU is at least N.
*> Modified.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_eig
*
* =====================================================================
SUBROUTINE ZHET22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
$ V, LDV, TAU, WORK, RWORK, RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER ITYPE, KBAND, LDA, LDU, LDV, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION D( * ), E( * ), RESULT( 2 ), RWORK( * )
COMPLEX*16 A( LDA, * ), TAU( * ), U( LDU, * ),
$ V( LDV, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ),
$ CONE = ( 1.0D0, 0.0D0 ) )
* ..
* .. Local Scalars ..
INTEGER J, JJ, JJ1, JJ2, NN, NNP1
DOUBLE PRECISION ANORM, ULP, UNFL, WNORM
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, ZLANHE
EXTERNAL DLAMCH, ZLANHE
* ..
* .. External Subroutines ..
EXTERNAL ZGEMM, ZHEMM, ZUNT01
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
IF( N.LE.0 .OR. M.LE.0 )
$ RETURN
*
UNFL = DLAMCH( 'Safe minimum' )
ULP = DLAMCH( 'Precision' )
*
* Do Test 1
*
* Norm of A:
*
ANORM = MAX( ZLANHE( '1', UPLO, N, A, LDA, RWORK ), UNFL )
*
* Compute error matrix:
*
* ITYPE=1: error = U' A U - S
*
CALL ZHEMM( 'L', UPLO, N, M, CONE, A, LDA, U, LDU, CZERO, WORK,
$ N )
NN = N*N
NNP1 = NN + 1
CALL ZGEMM( 'C', 'N', M, M, N, CONE, U, LDU, WORK, N, CZERO,
$ WORK( NNP1 ), N )
DO 10 J = 1, M
JJ = NN + ( J-1 )*N + J
WORK( JJ ) = WORK( JJ ) - D( J )
10 CONTINUE
IF( KBAND.EQ.1 .AND. N.GT.1 ) THEN
DO 20 J = 2, M
JJ1 = NN + ( J-1 )*N + J - 1
JJ2 = NN + ( J-2 )*N + J
WORK( JJ1 ) = WORK( JJ1 ) - E( J-1 )
WORK( JJ2 ) = WORK( JJ2 ) - E( J-1 )
20 CONTINUE
END IF
WNORM = ZLANHE( '1', UPLO, M, WORK( NNP1 ), N, RWORK )
*
IF( ANORM.GT.WNORM ) THEN
RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP )
ELSE
IF( ANORM.LT.ONE ) THEN
RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP )
ELSE
RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( M ) ) / ( M*ULP )
END IF
END IF
*
* Do Test 2
*
* Compute U'U - I
*
IF( ITYPE.EQ.1 )
$ CALL ZUNT01( 'Columns', N, M, U, LDU, WORK, 2*N*N, RWORK,
$ RESULT( 2 ) )
*
RETURN
*
* End of ZHET22
*
END
|