1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
*> \brief \b CPPT03
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
* RESID )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER LDWORK, N
* REAL RCOND, RESID
* ..
* .. Array Arguments ..
* REAL RWORK( * )
* COMPLEX A( * ), AINV( * ), WORK( LDWORK, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CPPT03 computes the residual for a Hermitian packed matrix times its
*> inverse:
*> norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> Hermitian matrix A is stored:
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (N*(N+1)/2)
*> The original Hermitian matrix A, stored as a packed
*> triangular matrix.
*> \endverbatim
*>
*> \param[in] AINV
*> \verbatim
*> AINV is COMPLEX array, dimension (N*(N+1)/2)
*> The (Hermitian) inverse of the matrix A, stored as a packed
*> triangular matrix.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (LDWORK,N)
*> \endverbatim
*>
*> \param[in] LDWORK
*> \verbatim
*> LDWORK is INTEGER
*> The leading dimension of the array WORK. LDWORK >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*> RCOND is REAL
*> The reciprocal of the condition number of A, computed as
*> ( 1/norm(A) ) / norm(AINV).
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_lin
*
* =====================================================================
SUBROUTINE CPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
$ RESID )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDWORK, N
REAL RCOND, RESID
* ..
* .. Array Arguments ..
REAL RWORK( * )
COMPLEX A( * ), AINV( * ), WORK( LDWORK, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, J, JJ
REAL AINVNM, ANORM, EPS
* ..
* .. External Functions ..
LOGICAL LSAME
REAL CLANGE, CLANHP, SLAMCH
EXTERNAL LSAME, CLANGE, CLANHP, SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG, REAL
* ..
* .. External Subroutines ..
EXTERNAL CCOPY, CHPMV
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RCOND = ONE
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
*
EPS = SLAMCH( 'Epsilon' )
ANORM = CLANHP( '1', UPLO, N, A, RWORK )
AINVNM = CLANHP( '1', UPLO, N, AINV, RWORK )
IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCOND = ZERO
RESID = ONE / EPS
RETURN
END IF
RCOND = ( ONE/ANORM ) / AINVNM
*
* UPLO = 'U':
* Copy the leading N-1 x N-1 submatrix of AINV to WORK(1:N,2:N) and
* expand it to a full matrix, then multiply by A one column at a
* time, moving the result one column to the left.
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Copy AINV
*
JJ = 1
DO 20 J = 1, N - 1
CALL CCOPY( J, AINV( JJ ), 1, WORK( 1, J+1 ), 1 )
DO 10 I = 1, J - 1
WORK( J, I+1 ) = CONJG( AINV( JJ+I-1 ) )
10 CONTINUE
JJ = JJ + J
20 CONTINUE
JJ = ( ( N-1 )*N ) / 2 + 1
DO 30 I = 1, N - 1
WORK( N, I+1 ) = CONJG( AINV( JJ+I-1 ) )
30 CONTINUE
*
* Multiply by A
*
DO 40 J = 1, N - 1
CALL CHPMV( 'Upper', N, -CONE, A, WORK( 1, J+1 ), 1, CZERO,
$ WORK( 1, J ), 1 )
40 CONTINUE
CALL CHPMV( 'Upper', N, -CONE, A, AINV( JJ ), 1, CZERO,
$ WORK( 1, N ), 1 )
*
* UPLO = 'L':
* Copy the trailing N-1 x N-1 submatrix of AINV to WORK(1:N,1:N-1)
* and multiply by A, moving each column to the right.
*
ELSE
*
* Copy AINV
*
DO 50 I = 1, N - 1
WORK( 1, I ) = CONJG( AINV( I+1 ) )
50 CONTINUE
JJ = N + 1
DO 70 J = 2, N
CALL CCOPY( N-J+1, AINV( JJ ), 1, WORK( J, J-1 ), 1 )
DO 60 I = 1, N - J
WORK( J, J+I-1 ) = CONJG( AINV( JJ+I ) )
60 CONTINUE
JJ = JJ + N - J + 1
70 CONTINUE
*
* Multiply by A
*
DO 80 J = N, 2, -1
CALL CHPMV( 'Lower', N, -CONE, A, WORK( 1, J-1 ), 1, CZERO,
$ WORK( 1, J ), 1 )
80 CONTINUE
CALL CHPMV( 'Lower', N, -CONE, A, AINV( 1 ), 1, CZERO,
$ WORK( 1, 1 ), 1 )
*
END IF
*
* Add the identity matrix to WORK .
*
DO 90 I = 1, N
WORK( I, I ) = WORK( I, I ) + CONE
90 CONTINUE
*
* Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
*
RESID = CLANGE( '1', N, N, WORK, LDWORK, RWORK )
*
RESID = ( ( RESID*RCOND )/EPS ) / REAL( N )
*
RETURN
*
* End of CPPT03
*
END
|