1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
*> \brief \b STZT01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* REAL FUNCTION STZT01( M, N, A, AF, LDA, TAU, WORK,
* LWORK )
*
* .. Scalar Arguments ..
* INTEGER LDA, LWORK, M, N
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), AF( LDA, * ), TAU( * ),
* $ WORK( LWORK )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> STZT01 returns
*> || A - R*Q || / ( M * eps * ||A|| )
*> for an upper trapezoidal A that was factored with STZRQF.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrices A and AF.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrices A and AF.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> The original upper trapezoidal M by N matrix A.
*> \endverbatim
*>
*> \param[in] AF
*> \verbatim
*> AF is REAL array, dimension (LDA,N)
*> The output of STZRQF for input matrix A.
*> The lower triangle is not referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the arrays A and AF.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is REAL array, dimension (M)
*> Details of the Householder transformations as returned by
*> STZRQF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. LWORK >= m*n + m.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_lin
*
* =====================================================================
REAL FUNCTION STZT01( M, N, A, AF, LDA, TAU, WORK,
$ LWORK )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDA, LWORK, M, N
* ..
* .. Array Arguments ..
REAL A( LDA, * ), AF( LDA, * ), TAU( * ),
$ WORK( LWORK )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
* ..
* .. Local Scalars ..
INTEGER I, J
REAL NORMA
* ..
* .. Local Arrays ..
REAL RWORK( 1 )
* ..
* .. External Functions ..
REAL SLAMCH, SLANGE
EXTERNAL SLAMCH, SLANGE
* ..
* .. External Subroutines ..
EXTERNAL SAXPY, SLATZM, SLASET, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, REAL
* ..
* .. Executable Statements ..
*
STZT01 = ZERO
*
IF( LWORK.LT.M*N+M ) THEN
CALL XERBLA( 'STZT01', 8 )
RETURN
END IF
*
* Quick return if possible
*
IF( M.LE.0 .OR. N.LE.0 )
$ RETURN
*
NORMA = SLANGE( 'One-norm', M, N, A, LDA, RWORK )
*
* Copy upper triangle R
*
CALL SLASET( 'Full', M, N, ZERO, ZERO, WORK, M )
DO 20 J = 1, M
DO 10 I = 1, J
WORK( ( J-1 )*M+I ) = AF( I, J )
10 CONTINUE
20 CONTINUE
*
* R = R * P(1) * ... *P(m)
*
DO 30 I = 1, M
CALL SLATZM( 'Right', I, N-M+1, AF( I, M+1 ), LDA, TAU( I ),
$ WORK( ( I-1 )*M+1 ), WORK( M*M+1 ), M,
$ WORK( M*N+1 ) )
30 CONTINUE
*
* R = R - A
*
DO 40 I = 1, N
CALL SAXPY( M, -ONE, A( 1, I ), 1, WORK( ( I-1 )*M+1 ), 1 )
40 CONTINUE
*
STZT01 = SLANGE( 'One-norm', M, N, WORK, M, RWORK )
*
STZT01 = STZT01 / ( SLAMCH( 'Epsilon' )*REAL( MAX( M, N ) ) )
IF( NORMA.NE.ZERO )
$ STZT01 = STZT01 / NORMA
*
RETURN
*
* End of STZT01
*
END
|