1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
*> \brief \b CLATM3
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* COMPLEX FUNCTION CLATM3( M, N, I, J, ISUB, JSUB, KL, KU, IDIST,
* ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK,
* SPARSE )
*
* .. Scalar Arguments ..
*
* INTEGER I, IDIST, IGRADE, IPVTNG, ISUB, J, JSUB, KL,
* $ KU, M, N
* REAL SPARSE
* ..
*
* .. Array Arguments ..
*
* INTEGER ISEED( 4 ), IWORK( * )
* COMPLEX D( * ), DL( * ), DR( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLATM3 returns the (ISUB,JSUB) entry of a random matrix of
*> dimension (M, N) described by the other paramters. (ISUB,JSUB)
*> is the final position of the (I,J) entry after pivoting
*> according to IPVTNG and IWORK. CLATM3 is called by the
*> CLATMR routine in order to build random test matrices. No error
*> checking on parameters is done, because this routine is called in
*> a tight loop by CLATMR which has already checked the parameters.
*>
*> Use of CLATM3 differs from CLATM2 in the order in which the random
*> number generator is called to fill in random matrix entries.
*> With CLATM2, the generator is called to fill in the pivoted matrix
*> columnwise. With CLATM3, the generator is called to fill in the
*> matrix columnwise, after which it is pivoted. Thus, CLATM3 can
*> be used to construct random matrices which differ only in their
*> order of rows and/or columns. CLATM2 is used to construct band
*> matrices while avoiding calling the random number generator for
*> entries outside the band (and therefore generating random numbers
*> in different orders for different pivot orders).
*>
*> The matrix whose (ISUB,JSUB) entry is returned is constructed as
*> follows (this routine only computes one entry):
*>
*> If ISUB is outside (1..M) or JSUB is outside (1..N), return zero
*> (this is convenient for generating matrices in band format).
*>
*> Generate a matrix A with random entries of distribution IDIST.
*>
*> Set the diagonal to D.
*>
*> Grade the matrix, if desired, from the left (by DL) and/or
*> from the right (by DR or DL) as specified by IGRADE.
*>
*> Permute, if desired, the rows and/or columns as specified by
*> IPVTNG and IWORK.
*>
*> Band the matrix to have lower bandwidth KL and upper
*> bandwidth KU.
*>
*> Set random entries to zero as specified by SPARSE.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> Number of rows of matrix. Not modified.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> Number of columns of matrix. Not modified.
*> \endverbatim
*>
*> \param[in] I
*> \verbatim
*> I is INTEGER
*> Row of unpivoted entry to be returned. Not modified.
*> \endverbatim
*>
*> \param[in] J
*> \verbatim
*> J is INTEGER
*> Column of unpivoted entry to be returned. Not modified.
*> \endverbatim
*>
*> \param[in,out] ISUB
*> \verbatim
*> ISUB is INTEGER
*> Row of pivoted entry to be returned. Changed on exit.
*> \endverbatim
*>
*> \param[in,out] JSUB
*> \verbatim
*> JSUB is INTEGER
*> Column of pivoted entry to be returned. Changed on exit.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*> KL is INTEGER
*> Lower bandwidth. Not modified.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*> KU is INTEGER
*> Upper bandwidth. Not modified.
*> \endverbatim
*>
*> \param[in] IDIST
*> \verbatim
*> IDIST is INTEGER
*> On entry, IDIST specifies the type of distribution to be
*> used to generate a random matrix .
*> 1 => real and imaginary parts each UNIFORM( 0, 1 )
*> 2 => real and imaginary parts each UNIFORM( -1, 1 )
*> 3 => real and imaginary parts each NORMAL( 0, 1 )
*> 4 => complex number uniform in DISK( 0 , 1 )
*> Not modified.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array of dimension ( 4 )
*> Seed for random number generator.
*> Changed on exit.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is COMPLEX array of dimension ( MIN( I , J ) )
*> Diagonal entries of matrix. Not modified.
*> \endverbatim
*>
*> \param[in] IGRADE
*> \verbatim
*> IGRADE is INTEGER
*> Specifies grading of matrix as follows:
*> 0 => no grading
*> 1 => matrix premultiplied by diag( DL )
*> 2 => matrix postmultiplied by diag( DR )
*> 3 => matrix premultiplied by diag( DL ) and
*> postmultiplied by diag( DR )
*> 4 => matrix premultiplied by diag( DL ) and
*> postmultiplied by inv( diag( DL ) )
*> 5 => matrix premultiplied by diag( DL ) and
*> postmultiplied by diag( CONJG(DL) )
*> 6 => matrix premultiplied by diag( DL ) and
*> postmultiplied by diag( DL )
*> Not modified.
*> \endverbatim
*>
*> \param[in] DL
*> \verbatim
*> DL is COMPLEX array ( I or J, as appropriate )
*> Left scale factors for grading matrix. Not modified.
*> \endverbatim
*>
*> \param[in] DR
*> \verbatim
*> DR is COMPLEX array ( I or J, as appropriate )
*> Right scale factors for grading matrix. Not modified.
*> \endverbatim
*>
*> \param[in] IPVTNG
*> \verbatim
*> IPVTNG is INTEGER
*> On entry specifies pivoting permutations as follows:
*> 0 => none.
*> 1 => row pivoting.
*> 2 => column pivoting.
*> 3 => full pivoting, i.e., on both sides.
*> Not modified.
*> \endverbatim
*>
*> \param[in] IWORK
*> \verbatim
*> IWORK is INTEGER array ( I or J, as appropriate )
*> This array specifies the permutation used. The
*> row (or column) originally in position K is in
*> position IWORK( K ) after pivoting.
*> This differs from IWORK for CLATM2. Not modified.
*> \endverbatim
*>
*> \param[in] SPARSE
*> \verbatim
*> SPARSE is REAL between 0. and 1.
*> On entry specifies the sparsity of the matrix
*> if sparse matix is to be generated.
*> SPARSE should lie between 0 and 1.
*> A uniform ( 0, 1 ) random number x is generated and
*> compared to SPARSE; if x is larger the matrix entry
*> is unchanged and if x is smaller the entry is set
*> to zero. Thus on the average a fraction SPARSE of the
*> entries will be set to zero.
*> Not modified.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_matgen
*
* =====================================================================
COMPLEX FUNCTION CLATM3( M, N, I, J, ISUB, JSUB, KL, KU, IDIST,
$ ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK,
$ SPARSE )
*
* -- LAPACK auxiliary routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
*
INTEGER I, IDIST, IGRADE, IPVTNG, ISUB, J, JSUB, KL,
$ KU, M, N
REAL SPARSE
* ..
*
* .. Array Arguments ..
*
INTEGER ISEED( 4 ), IWORK( * )
COMPLEX D( * ), DL( * ), DR( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
*
REAL ZERO
PARAMETER ( ZERO = 0.0E0 )
COMPLEX CZERO
PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ) )
* ..
*
* .. Local Scalars ..
*
COMPLEX CTEMP
* ..
*
* .. External Functions ..
*
REAL SLARAN
COMPLEX CLARND
EXTERNAL SLARAN, CLARND
* ..
*
* .. Intrinsic Functions ..
*
INTRINSIC CONJG
* ..
*
*-----------------------------------------------------------------------
*
* .. Executable Statements ..
*
*
* Check for I and J in range
*
IF( I.LT.1 .OR. I.GT.M .OR. J.LT.1 .OR. J.GT.N ) THEN
ISUB = I
JSUB = J
CLATM3 = CZERO
RETURN
END IF
*
* Compute subscripts depending on IPVTNG
*
IF( IPVTNG.EQ.0 ) THEN
ISUB = I
JSUB = J
ELSE IF( IPVTNG.EQ.1 ) THEN
ISUB = IWORK( I )
JSUB = J
ELSE IF( IPVTNG.EQ.2 ) THEN
ISUB = I
JSUB = IWORK( J )
ELSE IF( IPVTNG.EQ.3 ) THEN
ISUB = IWORK( I )
JSUB = IWORK( J )
END IF
*
* Check for banding
*
IF( JSUB.GT.ISUB+KU .OR. JSUB.LT.ISUB-KL ) THEN
CLATM3 = CZERO
RETURN
END IF
*
* Check for sparsity
*
IF( SPARSE.GT.ZERO ) THEN
IF( SLARAN( ISEED ).LT.SPARSE ) THEN
CLATM3 = CZERO
RETURN
END IF
END IF
*
* Compute entry and grade it according to IGRADE
*
IF( I.EQ.J ) THEN
CTEMP = D( I )
ELSE
CTEMP = CLARND( IDIST, ISEED )
END IF
IF( IGRADE.EQ.1 ) THEN
CTEMP = CTEMP*DL( I )
ELSE IF( IGRADE.EQ.2 ) THEN
CTEMP = CTEMP*DR( J )
ELSE IF( IGRADE.EQ.3 ) THEN
CTEMP = CTEMP*DL( I )*DR( J )
ELSE IF( IGRADE.EQ.4 .AND. I.NE.J ) THEN
CTEMP = CTEMP*DL( I ) / DL( J )
ELSE IF( IGRADE.EQ.5 ) THEN
CTEMP = CTEMP*DL( I )*CONJG( DL( J ) )
ELSE IF( IGRADE.EQ.6 ) THEN
CTEMP = CTEMP*DL( I )*DL( J )
END IF
CLATM3 = CTEMP
RETURN
*
* End of CLATM3
*
END
|