File: ctzrzf.f

package info (click to toggle)
lapack 3.4.1%2Bdfsg-1%2Bdeb70u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 103,172 kB
  • sloc: fortran: 469,422; ansic: 127,041; makefile: 3,817; python: 267; sh: 94
file content (313 lines) | stat: -rw-r--r-- 8,548 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
*> \brief \b CTZRZF
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download CTZRZF + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctzrzf.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctzrzf.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctzrzf.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE CTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
* 
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDA, LWORK, M, N
*       ..
*       .. Array Arguments ..
*       COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CTZRZF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
*> to upper triangular form by means of unitary transformations.
*>
*> The upper trapezoidal matrix A is factored as
*>
*>    A = ( R  0 ) * Z,
*>
*> where Z is an N-by-N unitary matrix and R is an M-by-M upper
*> triangular matrix.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.  N >= M.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          On entry, the leading M-by-N upper trapezoidal part of the
*>          array A must contain the matrix to be factorized.
*>          On exit, the leading M-by-M upper triangular part of A
*>          contains the upper triangular matrix R, and elements M+1 to
*>          N of the first M rows of A, with the array TAU, represent the
*>          unitary matrix Z as a product of M elementary reflectors.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*>          TAU is COMPLEX array, dimension (M)
*>          The scalar factors of the elementary reflectors.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK.  LWORK >= max(1,M).
*>          For optimum performance LWORK >= M*NB, where NB is
*>          the optimal blocksize.
*>
*>          If LWORK = -1, then a workspace query is assumed; the routine
*>          only calculates the optimal size of the WORK array, returns
*>          this value as the first entry of the WORK array, and no error
*>          message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date April 2012
*
*> \ingroup complexOTHERcomputational
*
*> \par Contributors:
*  ==================
*>
*>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  The N-by-N matrix Z can be computed by
*>
*>     Z =  Z(1)*Z(2)* ... *Z(M)
*>
*>  where each N-by-N Z(k) is given by
*>
*>     Z(k) = I - tau(k)*v(k)*v(k)**H
*>
*>  with v(k) is the kth row vector of the M-by-N matrix
*>
*>     V = ( I   A(:,M+1:N) )
*>
*>  I is the M-by-M identity matrix, A(:,M+1:N) 
*>  is the output stored in A on exit from DTZRZF,
*>  and tau(k) is the kth element of the array TAU.
*>
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE CTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK computational routine (version 3.4.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     April 2012
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ZERO
      PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            I, IB, IWS, KI, KK, LDWORK, LWKMIN, LWKOPT,
     $                   M1, MU, NB, NBMIN, NX
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, CLARZB, CLARZT, CLATRZ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 )
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.M ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -4
      END IF
*
      IF( INFO.EQ.0 ) THEN
         IF( M.EQ.0 .OR. M.EQ.N ) THEN
            LWKOPT = 1
            LWKMIN = 1
         ELSE
*
*           Determine the block size.
*
            NB = ILAENV( 1, 'CGERQF', ' ', M, N, -1, -1 )
            LWKOPT = M*NB
            LWKMIN = MAX( 1, M )
         END IF
         WORK( 1 ) = LWKOPT
*
         IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
            INFO = -7
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CTZRZF', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 ) THEN
         RETURN
      ELSE IF( M.EQ.N ) THEN
         DO 10 I = 1, N
            TAU( I ) = ZERO
   10    CONTINUE
         RETURN
      END IF
*
      NBMIN = 2
      NX = 1
      IWS = M
      IF( NB.GT.1 .AND. NB.LT.M ) THEN
*
*        Determine when to cross over from blocked to unblocked code.
*
         NX = MAX( 0, ILAENV( 3, 'CGERQF', ' ', M, N, -1, -1 ) )
         IF( NX.LT.M ) THEN
*
*           Determine if workspace is large enough for blocked code.
*
            LDWORK = M
            IWS = LDWORK*NB
            IF( LWORK.LT.IWS ) THEN
*
*              Not enough workspace to use optimal NB:  reduce NB and
*              determine the minimum value of NB.
*
               NB = LWORK / LDWORK
               NBMIN = MAX( 2, ILAENV( 2, 'CGERQF', ' ', M, N, -1,
     $                 -1 ) )
            END IF
         END IF
      END IF
*
      IF( NB.GE.NBMIN .AND. NB.LT.M .AND. NX.LT.M ) THEN
*
*        Use blocked code initially.
*        The last kk rows are handled by the block method.
*
         M1 = MIN( M+1, N )
         KI = ( ( M-NX-1 ) / NB )*NB
         KK = MIN( M, KI+NB )
*
         DO 20 I = M - KK + KI + 1, M - KK + 1, -NB
            IB = MIN( M-I+1, NB )
*
*           Compute the TZ factorization of the current block
*           A(i:i+ib-1,i:n)
*
            CALL CLATRZ( IB, N-I+1, N-M, A( I, I ), LDA, TAU( I ),
     $                   WORK )
            IF( I.GT.1 ) THEN
*
*              Form the triangular factor of the block reflector
*              H = H(i+ib-1) . . . H(i+1) H(i)
*
               CALL CLARZT( 'Backward', 'Rowwise', N-M, IB, A( I, M1 ),
     $                      LDA, TAU( I ), WORK, LDWORK )
*
*              Apply H to A(1:i-1,i:n) from the right
*
               CALL CLARZB( 'Right', 'No transpose', 'Backward',
     $                      'Rowwise', I-1, N-I+1, IB, N-M, A( I, M1 ),
     $                      LDA, WORK, LDWORK, A( 1, I ), LDA,
     $                      WORK( IB+1 ), LDWORK )
            END IF
   20    CONTINUE
         MU = I + NB - 1
      ELSE
         MU = M
      END IF
*
*     Use unblocked code to factor the last or only block
*
      IF( MU.GT.0 )
     $   CALL CLATRZ( MU, N, N-M, A, LDA, TAU, WORK )
*
      WORK( 1 ) = LWKOPT
*
      RETURN
*
*     End of CTZRZF
*
      END