| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 
 | *> \brief \b ZLATTR
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZLATTR( IMAT, UPLO, TRANS, DIAG, ISEED, N, A, LDA, B,
*                          WORK, RWORK, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          DIAG, TRANS, UPLO
*       INTEGER            IMAT, INFO, LDA, N
*       ..
*       .. Array Arguments ..
*       INTEGER            ISEED( 4 )
*       DOUBLE PRECISION   RWORK( * )
*       COMPLEX*16         A( LDA, * ), B( * ), WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZLATTR generates a triangular test matrix in 2-dimensional storage.
*> IMAT and UPLO uniquely specify the properties of the test matrix,
*> which is returned in the array A.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] IMAT
*> \verbatim
*>          IMAT is INTEGER
*>          An integer key describing which matrix to generate for this
*>          path.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the matrix A will be upper or lower
*>          triangular.
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          Specifies whether the matrix or its transpose will be used.
*>          = 'N':  No transpose
*>          = 'T':  Transpose
*>          = 'C':  Conjugate transpose
*> \endverbatim
*>
*> \param[out] DIAG
*> \verbatim
*>          DIAG is CHARACTER*1
*>          Specifies whether or not the matrix A is unit triangular.
*>          = 'N':  Non-unit triangular
*>          = 'U':  Unit triangular
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension (4)
*>          The seed vector for the random number generator (used in
*>          ZLATMS).  Modified on exit.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix to be generated.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          The triangular matrix A.  If UPLO = 'U', the leading N x N
*>          upper triangular part of the array A contains the upper
*>          triangular matrix, and the strictly lower triangular part of
*>          A is not referenced.  If UPLO = 'L', the leading N x N lower
*>          triangular part of the array A contains the lower triangular
*>          matrix and the strictly upper triangular part of A is not
*>          referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*>          B is COMPLEX*16 array, dimension (N)
*>          The right hand side vector, if IMAT > 10.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16_lin
*
*  =====================================================================
      SUBROUTINE ZLATTR( IMAT, UPLO, TRANS, DIAG, ISEED, N, A, LDA, B,
     $                   WORK, RWORK, INFO )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, TRANS, UPLO
      INTEGER            IMAT, INFO, LDA, N
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( 4 )
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         A( LDA, * ), B( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, TWO, ZERO
      PARAMETER          ( ONE = 1.0D+0, TWO = 2.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      CHARACTER          DIST, TYPE
      CHARACTER*3        PATH
      INTEGER            I, IY, J, JCOUNT, KL, KU, MODE
      DOUBLE PRECISION   ANORM, BIGNUM, BNORM, BSCAL, C, CNDNUM, REXP,
     $                   SFAC, SMLNUM, TEXP, TLEFT, TSCAL, ULP, UNFL, X,
     $                   Y, Z
      COMPLEX*16         PLUS1, PLUS2, RA, RB, S, STAR1
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IZAMAX
      DOUBLE PRECISION   DLAMCH, DLARND
      COMPLEX*16         ZLARND
      EXTERNAL           LSAME, IZAMAX, DLAMCH, DLARND, ZLARND
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLABAD, DLARNV, ZCOPY, ZDSCAL, ZLARNV, ZLATB4,
     $                   ZLATMS, ZROT, ZROTG, ZSWAP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, MAX, SQRT
*     ..
*     .. Executable Statements ..
*
      PATH( 1: 1 ) = 'Zomplex precision'
      PATH( 2: 3 ) = 'TR'
      UNFL = DLAMCH( 'Safe minimum' )
      ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
      SMLNUM = UNFL
      BIGNUM = ( ONE-ULP ) / SMLNUM
      CALL DLABAD( SMLNUM, BIGNUM )
      IF( ( IMAT.GE.7 .AND. IMAT.LE.10 ) .OR. IMAT.EQ.18 ) THEN
         DIAG = 'U'
      ELSE
         DIAG = 'N'
      END IF
      INFO = 0
*
*     Quick return if N.LE.0.
*
      IF( N.LE.0 )
     $   RETURN
*
*     Call ZLATB4 to set parameters for CLATMS.
*
      UPPER = LSAME( UPLO, 'U' )
      IF( UPPER ) THEN
         CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
     $                CNDNUM, DIST )
      ELSE
         CALL ZLATB4( PATH, -IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
     $                CNDNUM, DIST )
      END IF
*
*     IMAT <= 6:  Non-unit triangular matrix
*
      IF( IMAT.LE.6 ) THEN
         CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, CNDNUM,
     $                ANORM, KL, KU, 'No packing', A, LDA, WORK, INFO )
*
*     IMAT > 6:  Unit triangular matrix
*     The diagonal is deliberately set to something other than 1.
*
*     IMAT = 7:  Matrix is the identity
*
      ELSE IF( IMAT.EQ.7 ) THEN
         IF( UPPER ) THEN
            DO 20 J = 1, N
               DO 10 I = 1, J - 1
                  A( I, J ) = ZERO
   10          CONTINUE
               A( J, J ) = J
   20       CONTINUE
         ELSE
            DO 40 J = 1, N
               A( J, J ) = J
               DO 30 I = J + 1, N
                  A( I, J ) = ZERO
   30          CONTINUE
   40       CONTINUE
         END IF
*
*     IMAT > 7:  Non-trivial unit triangular matrix
*
*     Generate a unit triangular matrix T with condition CNDNUM by
*     forming a triangular matrix with known singular values and
*     filling in the zero entries with Givens rotations.
*
      ELSE IF( IMAT.LE.10 ) THEN
         IF( UPPER ) THEN
            DO 60 J = 1, N
               DO 50 I = 1, J - 1
                  A( I, J ) = ZERO
   50          CONTINUE
               A( J, J ) = J
   60       CONTINUE
         ELSE
            DO 80 J = 1, N
               A( J, J ) = J
               DO 70 I = J + 1, N
                  A( I, J ) = ZERO
   70          CONTINUE
   80       CONTINUE
         END IF
*
*        Since the trace of a unit triangular matrix is 1, the product
*        of its singular values must be 1.  Let s = sqrt(CNDNUM),
*        x = sqrt(s) - 1/sqrt(s), y = sqrt(2/(n-2))*x, and z = x**2.
*        The following triangular matrix has singular values s, 1, 1,
*        ..., 1, 1/s:
*
*        1  y  y  y  ...  y  y  z
*           1  0  0  ...  0  0  y
*              1  0  ...  0  0  y
*                 .  ...  .  .  .
*                     .   .  .  .
*                         1  0  y
*                            1  y
*                               1
*
*        To fill in the zeros, we first multiply by a matrix with small
*        condition number of the form
*
*        1  0  0  0  0  ...
*           1  +  *  0  0  ...
*              1  +  0  0  0
*                 1  +  *  0  0
*                    1  +  0  0
*                       ...
*                          1  +  0
*                             1  0
*                                1
*
*        Each element marked with a '*' is formed by taking the product
*        of the adjacent elements marked with '+'.  The '*'s can be
*        chosen freely, and the '+'s are chosen so that the inverse of
*        T will have elements of the same magnitude as T.  If the *'s in
*        both T and inv(T) have small magnitude, T is well conditioned.
*        The two offdiagonals of T are stored in WORK.
*
*        The product of these two matrices has the form
*
*        1  y  y  y  y  y  .  y  y  z
*           1  +  *  0  0  .  0  0  y
*              1  +  0  0  .  0  0  y
*                 1  +  *  .  .  .  .
*                    1  +  .  .  .  .
*                       .  .  .  .  .
*                          .  .  .  .
*                             1  +  y
*                                1  y
*                                   1
*
*        Now we multiply by Givens rotations, using the fact that
*
*              [  c   s ] [  1   w ] [ -c  -s ] =  [  1  -w ]
*              [ -s   c ] [  0   1 ] [  s  -c ]    [  0   1 ]
*        and
*              [ -c  -s ] [  1   0 ] [  c   s ] =  [  1   0 ]
*              [  s  -c ] [  w   1 ] [ -s   c ]    [ -w   1 ]
*
*        where c = w / sqrt(w**2+4) and s = 2 / sqrt(w**2+4).
*
         STAR1 = 0.25D0*ZLARND( 5, ISEED )
         SFAC = 0.5D0
         PLUS1 = SFAC*ZLARND( 5, ISEED )
         DO 90 J = 1, N, 2
            PLUS2 = STAR1 / PLUS1
            WORK( J ) = PLUS1
            WORK( N+J ) = STAR1
            IF( J+1.LE.N ) THEN
               WORK( J+1 ) = PLUS2
               WORK( N+J+1 ) = ZERO
               PLUS1 = STAR1 / PLUS2
               REXP = DLARND( 2, ISEED )
               IF( REXP.LT.ZERO ) THEN
                  STAR1 = -SFAC**( ONE-REXP )*ZLARND( 5, ISEED )
               ELSE
                  STAR1 = SFAC**( ONE+REXP )*ZLARND( 5, ISEED )
               END IF
            END IF
   90    CONTINUE
*
         X = SQRT( CNDNUM ) - 1 / SQRT( CNDNUM )
         IF( N.GT.2 ) THEN
            Y = SQRT( 2.D0 / ( N-2 ) )*X
         ELSE
            Y = ZERO
         END IF
         Z = X*X
*
         IF( UPPER ) THEN
            IF( N.GT.3 ) THEN
               CALL ZCOPY( N-3, WORK, 1, A( 2, 3 ), LDA+1 )
               IF( N.GT.4 )
     $            CALL ZCOPY( N-4, WORK( N+1 ), 1, A( 2, 4 ), LDA+1 )
            END IF
            DO 100 J = 2, N - 1
               A( 1, J ) = Y
               A( J, N ) = Y
  100       CONTINUE
            A( 1, N ) = Z
         ELSE
            IF( N.GT.3 ) THEN
               CALL ZCOPY( N-3, WORK, 1, A( 3, 2 ), LDA+1 )
               IF( N.GT.4 )
     $            CALL ZCOPY( N-4, WORK( N+1 ), 1, A( 4, 2 ), LDA+1 )
            END IF
            DO 110 J = 2, N - 1
               A( J, 1 ) = Y
               A( N, J ) = Y
  110       CONTINUE
            A( N, 1 ) = Z
         END IF
*
*        Fill in the zeros using Givens rotations.
*
         IF( UPPER ) THEN
            DO 120 J = 1, N - 1
               RA = A( J, J+1 )
               RB = 2.0D0
               CALL ZROTG( RA, RB, C, S )
*
*              Multiply by [ c  s; -conjg(s)  c] on the left.
*
               IF( N.GT.J+1 )
     $            CALL ZROT( N-J-1, A( J, J+2 ), LDA, A( J+1, J+2 ),
     $                       LDA, C, S )
*
*              Multiply by [-c -s;  conjg(s) -c] on the right.
*
               IF( J.GT.1 )
     $            CALL ZROT( J-1, A( 1, J+1 ), 1, A( 1, J ), 1, -C, -S )
*
*              Negate A(J,J+1).
*
               A( J, J+1 ) = -A( J, J+1 )
  120       CONTINUE
         ELSE
            DO 130 J = 1, N - 1
               RA = A( J+1, J )
               RB = 2.0D0
               CALL ZROTG( RA, RB, C, S )
               S = DCONJG( S )
*
*              Multiply by [ c -s;  conjg(s) c] on the right.
*
               IF( N.GT.J+1 )
     $            CALL ZROT( N-J-1, A( J+2, J+1 ), 1, A( J+2, J ), 1, C,
     $                       -S )
*
*              Multiply by [-c  s; -conjg(s) -c] on the left.
*
               IF( J.GT.1 )
     $            CALL ZROT( J-1, A( J, 1 ), LDA, A( J+1, 1 ), LDA, -C,
     $                       S )
*
*              Negate A(J+1,J).
*
               A( J+1, J ) = -A( J+1, J )
  130       CONTINUE
         END IF
*
*     IMAT > 10:  Pathological test cases.  These triangular matrices
*     are badly scaled or badly conditioned, so when used in solving a
*     triangular system they may cause overflow in the solution vector.
*
      ELSE IF( IMAT.EQ.11 ) THEN
*
*        Type 11:  Generate a triangular matrix with elements between
*        -1 and 1. Give the diagonal norm 2 to make it well-conditioned.
*        Make the right hand side large so that it requires scaling.
*
         IF( UPPER ) THEN
            DO 140 J = 1, N
               CALL ZLARNV( 4, ISEED, J-1, A( 1, J ) )
               A( J, J ) = ZLARND( 5, ISEED )*TWO
  140       CONTINUE
         ELSE
            DO 150 J = 1, N
               IF( J.LT.N )
     $            CALL ZLARNV( 4, ISEED, N-J, A( J+1, J ) )
               A( J, J ) = ZLARND( 5, ISEED )*TWO
  150       CONTINUE
         END IF
*
*        Set the right hand side so that the largest value is BIGNUM.
*
         CALL ZLARNV( 2, ISEED, N, B )
         IY = IZAMAX( N, B, 1 )
         BNORM = ABS( B( IY ) )
         BSCAL = BIGNUM / MAX( ONE, BNORM )
         CALL ZDSCAL( N, BSCAL, B, 1 )
*
      ELSE IF( IMAT.EQ.12 ) THEN
*
*        Type 12:  Make the first diagonal element in the solve small to
*        cause immediate overflow when dividing by T(j,j).
*        In type 12, the offdiagonal elements are small (CNORM(j) < 1).
*
         CALL ZLARNV( 2, ISEED, N, B )
         TSCAL = ONE / MAX( ONE, DBLE( N-1 ) )
         IF( UPPER ) THEN
            DO 160 J = 1, N
               CALL ZLARNV( 4, ISEED, J-1, A( 1, J ) )
               CALL ZDSCAL( J-1, TSCAL, A( 1, J ), 1 )
               A( J, J ) = ZLARND( 5, ISEED )
  160       CONTINUE
            A( N, N ) = SMLNUM*A( N, N )
         ELSE
            DO 170 J = 1, N
               IF( J.LT.N ) THEN
                  CALL ZLARNV( 4, ISEED, N-J, A( J+1, J ) )
                  CALL ZDSCAL( N-J, TSCAL, A( J+1, J ), 1 )
               END IF
               A( J, J ) = ZLARND( 5, ISEED )
  170       CONTINUE
            A( 1, 1 ) = SMLNUM*A( 1, 1 )
         END IF
*
      ELSE IF( IMAT.EQ.13 ) THEN
*
*        Type 13:  Make the first diagonal element in the solve small to
*        cause immediate overflow when dividing by T(j,j).
*        In type 13, the offdiagonal elements are O(1) (CNORM(j) > 1).
*
         CALL ZLARNV( 2, ISEED, N, B )
         IF( UPPER ) THEN
            DO 180 J = 1, N
               CALL ZLARNV( 4, ISEED, J-1, A( 1, J ) )
               A( J, J ) = ZLARND( 5, ISEED )
  180       CONTINUE
            A( N, N ) = SMLNUM*A( N, N )
         ELSE
            DO 190 J = 1, N
               IF( J.LT.N )
     $            CALL ZLARNV( 4, ISEED, N-J, A( J+1, J ) )
               A( J, J ) = ZLARND( 5, ISEED )
  190       CONTINUE
            A( 1, 1 ) = SMLNUM*A( 1, 1 )
         END IF
*
      ELSE IF( IMAT.EQ.14 ) THEN
*
*        Type 14:  T is diagonal with small numbers on the diagonal to
*        make the growth factor underflow, but a small right hand side
*        chosen so that the solution does not overflow.
*
         IF( UPPER ) THEN
            JCOUNT = 1
            DO 210 J = N, 1, -1
               DO 200 I = 1, J - 1
                  A( I, J ) = ZERO
  200          CONTINUE
               IF( JCOUNT.LE.2 ) THEN
                  A( J, J ) = SMLNUM*ZLARND( 5, ISEED )
               ELSE
                  A( J, J ) = ZLARND( 5, ISEED )
               END IF
               JCOUNT = JCOUNT + 1
               IF( JCOUNT.GT.4 )
     $            JCOUNT = 1
  210       CONTINUE
         ELSE
            JCOUNT = 1
            DO 230 J = 1, N
               DO 220 I = J + 1, N
                  A( I, J ) = ZERO
  220          CONTINUE
               IF( JCOUNT.LE.2 ) THEN
                  A( J, J ) = SMLNUM*ZLARND( 5, ISEED )
               ELSE
                  A( J, J ) = ZLARND( 5, ISEED )
               END IF
               JCOUNT = JCOUNT + 1
               IF( JCOUNT.GT.4 )
     $            JCOUNT = 1
  230       CONTINUE
         END IF
*
*        Set the right hand side alternately zero and small.
*
         IF( UPPER ) THEN
            B( 1 ) = ZERO
            DO 240 I = N, 2, -2
               B( I ) = ZERO
               B( I-1 ) = SMLNUM*ZLARND( 5, ISEED )
  240       CONTINUE
         ELSE
            B( N ) = ZERO
            DO 250 I = 1, N - 1, 2
               B( I ) = ZERO
               B( I+1 ) = SMLNUM*ZLARND( 5, ISEED )
  250       CONTINUE
         END IF
*
      ELSE IF( IMAT.EQ.15 ) THEN
*
*        Type 15:  Make the diagonal elements small to cause gradual
*        overflow when dividing by T(j,j).  To control the amount of
*        scaling needed, the matrix is bidiagonal.
*
         TEXP = ONE / MAX( ONE, DBLE( N-1 ) )
         TSCAL = SMLNUM**TEXP
         CALL ZLARNV( 4, ISEED, N, B )
         IF( UPPER ) THEN
            DO 270 J = 1, N
               DO 260 I = 1, J - 2
                  A( I, J ) = 0.D0
  260          CONTINUE
               IF( J.GT.1 )
     $            A( J-1, J ) = DCMPLX( -ONE, -ONE )
               A( J, J ) = TSCAL*ZLARND( 5, ISEED )
  270       CONTINUE
            B( N ) = DCMPLX( ONE, ONE )
         ELSE
            DO 290 J = 1, N
               DO 280 I = J + 2, N
                  A( I, J ) = 0.D0
  280          CONTINUE
               IF( J.LT.N )
     $            A( J+1, J ) = DCMPLX( -ONE, -ONE )
               A( J, J ) = TSCAL*ZLARND( 5, ISEED )
  290       CONTINUE
            B( 1 ) = DCMPLX( ONE, ONE )
         END IF
*
      ELSE IF( IMAT.EQ.16 ) THEN
*
*        Type 16:  One zero diagonal element.
*
         IY = N / 2 + 1
         IF( UPPER ) THEN
            DO 300 J = 1, N
               CALL ZLARNV( 4, ISEED, J-1, A( 1, J ) )
               IF( J.NE.IY ) THEN
                  A( J, J ) = ZLARND( 5, ISEED )*TWO
               ELSE
                  A( J, J ) = ZERO
               END IF
  300       CONTINUE
         ELSE
            DO 310 J = 1, N
               IF( J.LT.N )
     $            CALL ZLARNV( 4, ISEED, N-J, A( J+1, J ) )
               IF( J.NE.IY ) THEN
                  A( J, J ) = ZLARND( 5, ISEED )*TWO
               ELSE
                  A( J, J ) = ZERO
               END IF
  310       CONTINUE
         END IF
         CALL ZLARNV( 2, ISEED, N, B )
         CALL ZDSCAL( N, TWO, B, 1 )
*
      ELSE IF( IMAT.EQ.17 ) THEN
*
*        Type 17:  Make the offdiagonal elements large to cause overflow
*        when adding a column of T.  In the non-transposed case, the
*        matrix is constructed to cause overflow when adding a column in
*        every other step.
*
         TSCAL = UNFL / ULP
         TSCAL = ( ONE-ULP ) / TSCAL
         DO 330 J = 1, N
            DO 320 I = 1, N
               A( I, J ) = 0.D0
  320       CONTINUE
  330    CONTINUE
         TEXP = ONE
         IF( UPPER ) THEN
            DO 340 J = N, 2, -2
               A( 1, J ) = -TSCAL / DBLE( N+1 )
               A( J, J ) = ONE
               B( J ) = TEXP*( ONE-ULP )
               A( 1, J-1 ) = -( TSCAL / DBLE( N+1 ) ) / DBLE( N+2 )
               A( J-1, J-1 ) = ONE
               B( J-1 ) = TEXP*DBLE( N*N+N-1 )
               TEXP = TEXP*2.D0
  340       CONTINUE
            B( 1 ) = ( DBLE( N+1 ) / DBLE( N+2 ) )*TSCAL
         ELSE
            DO 350 J = 1, N - 1, 2
               A( N, J ) = -TSCAL / DBLE( N+1 )
               A( J, J ) = ONE
               B( J ) = TEXP*( ONE-ULP )
               A( N, J+1 ) = -( TSCAL / DBLE( N+1 ) ) / DBLE( N+2 )
               A( J+1, J+1 ) = ONE
               B( J+1 ) = TEXP*DBLE( N*N+N-1 )
               TEXP = TEXP*2.D0
  350       CONTINUE
            B( N ) = ( DBLE( N+1 ) / DBLE( N+2 ) )*TSCAL
         END IF
*
      ELSE IF( IMAT.EQ.18 ) THEN
*
*        Type 18:  Generate a unit triangular matrix with elements
*        between -1 and 1, and make the right hand side large so that it
*        requires scaling.
*
         IF( UPPER ) THEN
            DO 360 J = 1, N
               CALL ZLARNV( 4, ISEED, J-1, A( 1, J ) )
               A( J, J ) = ZERO
  360       CONTINUE
         ELSE
            DO 370 J = 1, N
               IF( J.LT.N )
     $            CALL ZLARNV( 4, ISEED, N-J, A( J+1, J ) )
               A( J, J ) = ZERO
  370       CONTINUE
         END IF
*
*        Set the right hand side so that the largest value is BIGNUM.
*
         CALL ZLARNV( 2, ISEED, N, B )
         IY = IZAMAX( N, B, 1 )
         BNORM = ABS( B( IY ) )
         BSCAL = BIGNUM / MAX( ONE, BNORM )
         CALL ZDSCAL( N, BSCAL, B, 1 )
*
      ELSE IF( IMAT.EQ.19 ) THEN
*
*        Type 19:  Generate a triangular matrix with elements between
*        BIGNUM/(n-1) and BIGNUM so that at least one of the column
*        norms will exceed BIGNUM.
*        1/3/91:  ZLATRS no longer can handle this case
*
         TLEFT = BIGNUM / MAX( ONE, DBLE( N-1 ) )
         TSCAL = BIGNUM*( DBLE( N-1 ) / MAX( ONE, DBLE( N ) ) )
         IF( UPPER ) THEN
            DO 390 J = 1, N
               CALL ZLARNV( 5, ISEED, J, A( 1, J ) )
               CALL DLARNV( 1, ISEED, J, RWORK )
               DO 380 I = 1, J
                  A( I, J ) = A( I, J )*( TLEFT+RWORK( I )*TSCAL )
  380          CONTINUE
  390       CONTINUE
         ELSE
            DO 410 J = 1, N
               CALL ZLARNV( 5, ISEED, N-J+1, A( J, J ) )
               CALL DLARNV( 1, ISEED, N-J+1, RWORK )
               DO 400 I = J, N
                  A( I, J ) = A( I, J )*( TLEFT+RWORK( I-J+1 )*TSCAL )
  400          CONTINUE
  410       CONTINUE
         END IF
         CALL ZLARNV( 2, ISEED, N, B )
         CALL ZDSCAL( N, TWO, B, 1 )
      END IF
*
*     Flip the matrix if the transpose will be used.
*
      IF( .NOT.LSAME( TRANS, 'N' ) ) THEN
         IF( UPPER ) THEN
            DO 420 J = 1, N / 2
               CALL ZSWAP( N-2*J+1, A( J, J ), LDA, A( J+1, N-J+1 ),
     $                     -1 )
  420       CONTINUE
         ELSE
            DO 430 J = 1, N / 2
               CALL ZSWAP( N-2*J+1, A( J, J ), 1, A( N-J+1, J+1 ),
     $                     -LDA )
  430       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of ZLATTR
*
      END
 |