1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
*> \brief \b ZGEQPF
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZGEQPF + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeqpf.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeqpf.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeqpf.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZGEQPF( M, N, A, LDA, JPVT, TAU, WORK, RWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, M, N
* ..
* .. Array Arguments ..
* INTEGER JPVT( * )
* DOUBLE PRECISION RWORK( * )
* COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> This routine is deprecated and has been replaced by routine ZGEQP3.
*>
*> ZGEQPF computes a QR factorization with column pivoting of a
*> complex M-by-N matrix A: A*P = Q*R.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit, the upper triangle of the array contains the
*> min(M,N)-by-N upper triangular matrix R; the elements
*> below the diagonal, together with the array TAU,
*> represent the unitary matrix Q as a product of
*> min(m,n) elementary reflectors.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] JPVT
*> \verbatim
*> JPVT is INTEGER array, dimension (N)
*> On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
*> to the front of A*P (a leading column); if JPVT(i) = 0,
*> the i-th column of A is a free column.
*> On exit, if JPVT(i) = k, then the i-th column of A*P
*> was the k-th column of A.
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*> TAU is COMPLEX*16 array, dimension (min(M,N))
*> The scalar factors of the elementary reflectors.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (N)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16GEcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The matrix Q is represented as a product of elementary reflectors
*>
*> Q = H(1) H(2) . . . H(n)
*>
*> Each H(i) has the form
*>
*> H = I - tau * v * v**H
*>
*> where tau is a complex scalar, and v is a complex vector with
*> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i).
*>
*> The matrix P is represented in jpvt as follows: If
*> jpvt(j) = i
*> then the jth column of P is the ith canonical unit vector.
*>
*> Partial column norm updating strategy modified by
*> Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
*> University of Zagreb, Croatia.
*> -- April 2011 --
*> For more details see LAPACK Working Note 176.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE ZGEQPF( M, N, A, LDA, JPVT, TAU, WORK, RWORK, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N
* ..
* .. Array Arguments ..
INTEGER JPVT( * )
DOUBLE PRECISION RWORK( * )
COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, ITEMP, J, MA, MN, PVT
DOUBLE PRECISION TEMP, TEMP2, TOL3Z
COMPLEX*16 AII
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZGEQR2, ZLARF, ZLARFG, ZSWAP, ZUNM2R
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DCMPLX, DCONJG, MAX, MIN, SQRT
* ..
* .. External Functions ..
INTEGER IDAMAX
DOUBLE PRECISION DLAMCH, DZNRM2
EXTERNAL IDAMAX, DLAMCH, DZNRM2
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGEQPF', -INFO )
RETURN
END IF
*
MN = MIN( M, N )
TOL3Z = SQRT(DLAMCH('Epsilon'))
*
* Move initial columns up front
*
ITEMP = 1
DO 10 I = 1, N
IF( JPVT( I ).NE.0 ) THEN
IF( I.NE.ITEMP ) THEN
CALL ZSWAP( M, A( 1, I ), 1, A( 1, ITEMP ), 1 )
JPVT( I ) = JPVT( ITEMP )
JPVT( ITEMP ) = I
ELSE
JPVT( I ) = I
END IF
ITEMP = ITEMP + 1
ELSE
JPVT( I ) = I
END IF
10 CONTINUE
ITEMP = ITEMP - 1
*
* Compute the QR factorization and update remaining columns
*
IF( ITEMP.GT.0 ) THEN
MA = MIN( ITEMP, M )
CALL ZGEQR2( M, MA, A, LDA, TAU, WORK, INFO )
IF( MA.LT.N ) THEN
CALL ZUNM2R( 'Left', 'Conjugate transpose', M, N-MA, MA, A,
$ LDA, TAU, A( 1, MA+1 ), LDA, WORK, INFO )
END IF
END IF
*
IF( ITEMP.LT.MN ) THEN
*
* Initialize partial column norms. The first n elements of
* work store the exact column norms.
*
DO 20 I = ITEMP + 1, N
RWORK( I ) = DZNRM2( M-ITEMP, A( ITEMP+1, I ), 1 )
RWORK( N+I ) = RWORK( I )
20 CONTINUE
*
* Compute factorization
*
DO 40 I = ITEMP + 1, MN
*
* Determine ith pivot column and swap if necessary
*
PVT = ( I-1 ) + IDAMAX( N-I+1, RWORK( I ), 1 )
*
IF( PVT.NE.I ) THEN
CALL ZSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 )
ITEMP = JPVT( PVT )
JPVT( PVT ) = JPVT( I )
JPVT( I ) = ITEMP
RWORK( PVT ) = RWORK( I )
RWORK( N+PVT ) = RWORK( N+I )
END IF
*
* Generate elementary reflector H(i)
*
AII = A( I, I )
CALL ZLARFG( M-I+1, AII, A( MIN( I+1, M ), I ), 1,
$ TAU( I ) )
A( I, I ) = AII
*
IF( I.LT.N ) THEN
*
* Apply H(i) to A(i:m,i+1:n) from the left
*
AII = A( I, I )
A( I, I ) = DCMPLX( ONE )
CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
$ DCONJG( TAU( I ) ), A( I, I+1 ), LDA, WORK )
A( I, I ) = AII
END IF
*
* Update partial column norms
*
DO 30 J = I + 1, N
IF( RWORK( J ).NE.ZERO ) THEN
*
* NOTE: The following 4 lines follow from the analysis in
* Lapack Working Note 176.
*
TEMP = ABS( A( I, J ) ) / RWORK( J )
TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
TEMP2 = TEMP*( RWORK( J ) / RWORK( N+J ) )**2
IF( TEMP2 .LE. TOL3Z ) THEN
IF( M-I.GT.0 ) THEN
RWORK( J ) = DZNRM2( M-I, A( I+1, J ), 1 )
RWORK( N+J ) = RWORK( J )
ELSE
RWORK( J ) = ZERO
RWORK( N+J ) = ZERO
END IF
ELSE
RWORK( J ) = RWORK( J )*SQRT( TEMP )
END IF
END IF
30 CONTINUE
*
40 CONTINUE
END IF
RETURN
*
* End of ZGEQPF
*
END
|