| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 
 | *
*  Definition:
*  ===========
*
*      SUBROUTINE DGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T,
*     $                   TSIZE, C, LDC, WORK, LWORK, INFO )
*
*
*     .. Scalar Arguments ..
*      CHARACTER          SIDE, TRANS
*      INTEGER            INFO, LDA, M, N, K, LDT, TSIZE, LWORK, LDC
*     ..
*     .. Array Arguments ..
*      DOUBLE PRECISION   A( LDA, * ), T( * ), C(LDC, * ), WORK( * )
*     ..
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*>     DGEMLQ overwrites the general real M-by-N matrix C with
*>
*>                    SIDE = 'L'     SIDE = 'R'
*>    TRANS = 'N':      Q * C          C * Q
*>    TRANS = 'T':      Q**T * C       C * Q**T
*>    where Q is a real orthogonal matrix defined as the product
*>    of blocked elementary reflectors computed by short wide LQ
*>    factorization (DGELQ)
*>
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] SIDE
*> \verbatim
*>          SIDE is CHARACTER*1
*>          = 'L': apply Q or Q**T from the Left;
*>          = 'R': apply Q or Q**T from the Right.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          = 'N':  No transpose, apply Q;
*>          = 'T':  Transpose, apply Q**T.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >=0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix C. N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The number of elementary reflectors whose product defines
*>          the matrix Q.
*>          If SIDE = 'L', M >= K >= 0;
*>          if SIDE = 'R', N >= K >= 0.
*>
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension
*>                               (LDA,M) if SIDE = 'L',
*>                               (LDA,N) if SIDE = 'R'
*>          Part of the data structure to represent Q as returned by DGELQ.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A. LDA >= max(1,K).
*> \endverbatim
*>
*> \param[in] T
*> \verbatim
*>          T is DOUBLE PRECISION array, dimension (MAX(5,TSIZE)).
*>          Part of the data structure to represent Q as returned by DGELQ.
*> \endverbatim
*>
*> \param[in] TSIZE
*> \verbatim
*>          TSIZE is INTEGER
*>          The dimension of the array T. TSIZE >= 5.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is DOUBLE PRECISION array, dimension (LDC,N)
*>          On entry, the M-by-N matrix C.
*>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>          The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>         (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK.
*>          If LWORK = -1, then a workspace query is assumed. The routine
*>          only calculates the size of the WORK array, returns this
*>          value as WORK(1), and no error message related to WORK 
*>          is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \par Further Details
*  ====================
*>
*> \verbatim
*>
*> These details are particular for this LAPACK implementation. Users should not 
*> take them for granted. These details may change in the future, and are unlikely not
*> true for another LAPACK implementation. These details are relevant if one wants
*> to try to understand the code. They are not part of the interface.
*>
*> In this version,
*>
*>          T(2): row block size (MB)
*>          T(3): column block size (NB)
*>          T(6:TSIZE): data structure needed for Q, computed by
*>                           DLASWLQ or DGELQT
*>
*>  Depending on the matrix dimensions M and N, and row and column
*>  block sizes MB and NB returned by ILAENV, DGELQ will use either
*>  DLASWLQ (if the matrix is wide-and-short) or DGELQT to compute
*>  the LQ factorization.
*>  This version of DGEMLQ will use either DLAMSWLQ or DGEMLQT to 
*>  multiply matrix Q by another matrix.
*>  Further Details in DLAMSWLQ or DGEMLQT.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE DGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE,
     $                   C, LDC, WORK, LWORK, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          SIDE, TRANS
      INTEGER            INFO, LDA, M, N, K, TSIZE, LWORK, LDC
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), T( * ), C( LDC, * ), WORK( * )
*     ..
*
* =====================================================================
*
*     ..
*     .. Local Scalars ..
      LOGICAL            LEFT, RIGHT, TRAN, NOTRAN, LQUERY
      INTEGER            MB, NB, LW, NBLCKS, MN
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLAMSWLQ, DGEMLQT, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          INT, MAX, MIN, MOD
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      LQUERY  = LWORK.EQ.-1
      NOTRAN  = LSAME( TRANS, 'N' )
      TRAN    = LSAME( TRANS, 'T' )
      LEFT    = LSAME( SIDE, 'L' )
      RIGHT   = LSAME( SIDE, 'R' )
*
      MB = INT( T( 2 ) )
      NB = INT( T( 3 ) )
      IF( LEFT ) THEN
        LW = N * MB
        MN = M
      ELSE
        LW = M * MB
        MN = N
      END IF
*
      IF( ( NB.GT.K ) .AND. ( MN.GT.K ) ) THEN
        IF( MOD( MN - K, NB - K ) .EQ. 0 ) THEN
          NBLCKS = ( MN - K ) / ( NB - K )
        ELSE
          NBLCKS = ( MN - K ) / ( NB - K ) + 1
        END IF
      ELSE
        NBLCKS = 1
      END IF
*
      INFO = 0
      IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
        INFO = -1
      ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
        INFO = -2
      ELSE IF( M.LT.0 ) THEN
        INFO = -3
      ELSE IF( N.LT.0 ) THEN
        INFO = -4
      ELSE IF( K.LT.0 .OR. K.GT.MN ) THEN
        INFO = -5
      ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
        INFO = -7
      ELSE IF( TSIZE.LT.5 ) THEN
        INFO = -9
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
        INFO = -11
      ELSE IF( ( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN
        INFO = -13
      END IF
*
      IF( INFO.EQ.0 ) THEN
        WORK( 1 ) = LW
      END IF
*
      IF( INFO.NE.0 ) THEN
        CALL XERBLA( 'DGEMLQ', -INFO )
        RETURN
      ELSE IF( LQUERY ) THEN
        RETURN
      END IF
*
*     Quick return if possible
*
      IF( MIN( M, N, K ).EQ.0 ) THEN
        RETURN
      END IF
*
      IF( ( LEFT .AND. M.LE.K ) .OR. ( RIGHT .AND. N.LE.K )
     $     .OR. ( NB.LE.K ) .OR. ( NB.GE.MAX( M, N, K ) ) ) THEN
        CALL DGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA,
     $                T( 6 ), MB, C, LDC, WORK, INFO )
      ELSE
        CALL DLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T( 6 ),
     $                 MB, C, LDC, WORK, LWORK, INFO )
      END IF
*
      WORK( 1 ) = LW
*
      RETURN
*
*     End of DGEMLQ
*
      END
 |