1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
*> \brief \b DLARTG generates a plane rotation with real cosine and real sine.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLARTG + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlartg.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlartg.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlartg.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLARTG( F, G, CS, SN, R )
*
* .. Scalar Arguments ..
* DOUBLE PRECISION CS, F, G, R, SN
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLARTG generate a plane rotation so that
*>
*> [ CS SN ] . [ F ] = [ R ] where CS**2 + SN**2 = 1.
*> [ -SN CS ] [ G ] [ 0 ]
*>
*> This is a slower, more accurate version of the BLAS1 routine DROTG,
*> with the following other differences:
*> F and G are unchanged on return.
*> If G=0, then CS=1 and SN=0.
*> If F=0 and (G .ne. 0), then CS=0 and SN=1 without doing any
*> floating point operations (saves work in DBDSQR when
*> there are zeros on the diagonal).
*>
*> If F exceeds G in magnitude, CS will be positive.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] F
*> \verbatim
*> F is DOUBLE PRECISION
*> The first component of vector to be rotated.
*> \endverbatim
*>
*> \param[in] G
*> \verbatim
*> G is DOUBLE PRECISION
*> The second component of vector to be rotated.
*> \endverbatim
*>
*> \param[out] CS
*> \verbatim
*> CS is DOUBLE PRECISION
*> The cosine of the rotation.
*> \endverbatim
*>
*> \param[out] SN
*> \verbatim
*> SN is DOUBLE PRECISION
*> The sine of the rotation.
*> \endverbatim
*>
*> \param[out] R
*> \verbatim
*> R is DOUBLE PRECISION
*> The nonzero component of the rotated vector.
*>
*> This version has a few statements commented out for thread safety
*> (machine parameters are computed on each entry). 10 feb 03, SJH.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup OTHERauxiliary
*
* =====================================================================
SUBROUTINE DLARTG( F, G, CS, SN, R )
*
* -- LAPACK auxiliary routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
DOUBLE PRECISION CS, F, G, R, SN
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D0 )
DOUBLE PRECISION TWO
PARAMETER ( TWO = 2.0D0 )
* ..
* .. Local Scalars ..
* LOGICAL FIRST
INTEGER COUNT, I
DOUBLE PRECISION EPS, F1, G1, SAFMIN, SAFMN2, SAFMX2, SCALE
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, INT, LOG, MAX, SQRT
* ..
* .. Save statement ..
* SAVE FIRST, SAFMX2, SAFMIN, SAFMN2
* ..
* .. Data statements ..
* DATA FIRST / .TRUE. /
* ..
* .. Executable Statements ..
*
* IF( FIRST ) THEN
SAFMIN = DLAMCH( 'S' )
EPS = DLAMCH( 'E' )
SAFMN2 = DLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /
$ LOG( DLAMCH( 'B' ) ) / TWO )
SAFMX2 = ONE / SAFMN2
* FIRST = .FALSE.
* END IF
IF( G.EQ.ZERO ) THEN
CS = ONE
SN = ZERO
R = F
ELSE IF( F.EQ.ZERO ) THEN
CS = ZERO
SN = ONE
R = G
ELSE
F1 = F
G1 = G
SCALE = MAX( ABS( F1 ), ABS( G1 ) )
IF( SCALE.GE.SAFMX2 ) THEN
COUNT = 0
10 CONTINUE
COUNT = COUNT + 1
F1 = F1*SAFMN2
G1 = G1*SAFMN2
SCALE = MAX( ABS( F1 ), ABS( G1 ) )
IF( SCALE.GE.SAFMX2 )
$ GO TO 10
R = SQRT( F1**2+G1**2 )
CS = F1 / R
SN = G1 / R
DO 20 I = 1, COUNT
R = R*SAFMX2
20 CONTINUE
ELSE IF( SCALE.LE.SAFMN2 ) THEN
COUNT = 0
30 CONTINUE
COUNT = COUNT + 1
F1 = F1*SAFMX2
G1 = G1*SAFMX2
SCALE = MAX( ABS( F1 ), ABS( G1 ) )
IF( SCALE.LE.SAFMN2 )
$ GO TO 30
R = SQRT( F1**2+G1**2 )
CS = F1 / R
SN = G1 / R
DO 40 I = 1, COUNT
R = R*SAFMN2
40 CONTINUE
ELSE
R = SQRT( F1**2+G1**2 )
CS = F1 / R
SN = G1 / R
END IF
IF( ABS( F ).GT.ABS( G ) .AND. CS.LT.ZERO ) THEN
CS = -CS
SN = -SN
R = -R
END IF
END IF
RETURN
*
* End of DLARTG
*
END
|