1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
*> \brief \b ZGESC2 solves a system of linear equations using the LU factorization with complete pivoting computed by sgetc2.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZGESC2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgesc2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgesc2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgesc2.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )
*
* .. Scalar Arguments ..
* INTEGER LDA, N
* DOUBLE PRECISION SCALE
* ..
* .. Array Arguments ..
* INTEGER IPIV( * ), JPIV( * )
* COMPLEX*16 A( LDA, * ), RHS( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZGESC2 solves a system of linear equations
*>
*> A * X = scale* RHS
*>
*> with a general N-by-N matrix A using the LU factorization with
*> complete pivoting computed by ZGETC2.
*>
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA, N)
*> On entry, the LU part of the factorization of the n-by-n
*> matrix A computed by ZGETC2: A = P * L * U * Q
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1, N).
*> \endverbatim
*>
*> \param[in,out] RHS
*> \verbatim
*> RHS is COMPLEX*16 array, dimension N.
*> On entry, the right hand side vector b.
*> On exit, the solution vector X.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N).
*> The pivot indices; for 1 <= i <= N, row i of the
*> matrix has been interchanged with row IPIV(i).
*> \endverbatim
*>
*> \param[in] JPIV
*> \verbatim
*> JPIV is INTEGER array, dimension (N).
*> The pivot indices; for 1 <= j <= N, column j of the
*> matrix has been interchanged with column JPIV(j).
*> \endverbatim
*>
*> \param[out] SCALE
*> \verbatim
*> SCALE is DOUBLE PRECISION
*> On exit, SCALE contains the scale factor. SCALE is chosen
*> 0 <= SCALE <= 1 to prevent owerflow in the solution.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16GEauxiliary
*
*> \par Contributors:
* ==================
*>
*> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
*> Umea University, S-901 87 Umea, Sweden.
*
* =====================================================================
SUBROUTINE ZGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )
*
* -- LAPACK auxiliary routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER LDA, N
DOUBLE PRECISION SCALE
* ..
* .. Array Arguments ..
INTEGER IPIV( * ), JPIV( * )
COMPLEX*16 A( LDA, * ), RHS( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, J
DOUBLE PRECISION BIGNUM, EPS, SMLNUM
COMPLEX*16 TEMP
* ..
* .. External Subroutines ..
EXTERNAL ZLASWP, ZSCAL
* ..
* .. External Functions ..
INTEGER IZAMAX
DOUBLE PRECISION DLAMCH
EXTERNAL IZAMAX, DLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX
* ..
* .. Executable Statements ..
*
* Set constant to control overflow
*
EPS = DLAMCH( 'P' )
SMLNUM = DLAMCH( 'S' ) / EPS
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
*
* Apply permutations IPIV to RHS
*
CALL ZLASWP( 1, RHS, LDA, 1, N-1, IPIV, 1 )
*
* Solve for L part
*
DO 20 I = 1, N - 1
DO 10 J = I + 1, N
RHS( J ) = RHS( J ) - A( J, I )*RHS( I )
10 CONTINUE
20 CONTINUE
*
* Solve for U part
*
SCALE = ONE
*
* Check for scaling
*
I = IZAMAX( N, RHS, 1 )
IF( TWO*SMLNUM*ABS( RHS( I ) ).GT.ABS( A( N, N ) ) ) THEN
TEMP = DCMPLX( ONE / TWO, ZERO ) / ABS( RHS( I ) )
CALL ZSCAL( N, TEMP, RHS( 1 ), 1 )
SCALE = SCALE*DBLE( TEMP )
END IF
DO 40 I = N, 1, -1
TEMP = DCMPLX( ONE, ZERO ) / A( I, I )
RHS( I ) = RHS( I )*TEMP
DO 30 J = I + 1, N
RHS( I ) = RHS( I ) - RHS( J )*( A( I, J )*TEMP )
30 CONTINUE
40 CONTINUE
*
* Apply permutations JPIV to the solution (RHS)
*
CALL ZLASWP( 1, RHS, LDA, 1, N-1, JPIV, -1 )
RETURN
*
* End of ZGESC2
*
END
|