| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 
 | *> \brief \b DGET36
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE DGET36( RMAX, LMAX, NINFO, KNT, NIN )
*
*       .. Scalar Arguments ..
*       INTEGER            KNT, LMAX, NIN
*       DOUBLE PRECISION   RMAX
*       ..
*       .. Array Arguments ..
*       INTEGER            NINFO( 3 )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DGET36 tests DTREXC, a routine for moving blocks (either 1 by 1 or
*> 2 by 2) on the diagonal of a matrix in real Schur form.  Thus, DLAEXC
*> computes an orthogonal matrix Q such that
*>
*>    Q' * T1 * Q  = T2
*>
*> and where one of the diagonal blocks of T1 (the one at row IFST) has
*> been moved to position ILST.
*>
*> The test code verifies that the residual Q'*T1*Q-T2 is small, that T2
*> is in Schur form, and that the final position of the IFST block is
*> ILST (within +-1).
*>
*> The test matrices are read from a file with logical unit number NIN.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[out] RMAX
*> \verbatim
*>          RMAX is DOUBLE PRECISION
*>          Value of the largest test ratio.
*> \endverbatim
*>
*> \param[out] LMAX
*> \verbatim
*>          LMAX is INTEGER
*>          Example number where largest test ratio achieved.
*> \endverbatim
*>
*> \param[out] NINFO
*> \verbatim
*>          NINFO is INTEGER array, dimension (3)
*>          NINFO(J) is the number of examples where INFO=J.
*> \endverbatim
*>
*> \param[out] KNT
*> \verbatim
*>          KNT is INTEGER
*>          Total number of examples tested.
*> \endverbatim
*>
*> \param[in] NIN
*> \verbatim
*>          NIN is INTEGER
*>          Input logical unit number.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup double_eig
*
*  =====================================================================
      SUBROUTINE DGET36( RMAX, LMAX, NINFO, KNT, NIN )
*
*  -- LAPACK test routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            KNT, LMAX, NIN
      DOUBLE PRECISION   RMAX
*     ..
*     .. Array Arguments ..
      INTEGER            NINFO( 3 )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
      INTEGER            LDT, LWORK
      PARAMETER          ( LDT = 10, LWORK = 2*LDT*LDT )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IFST, IFST1, IFST2, IFSTSV, ILST, ILST1,
     $                   ILST2, ILSTSV, INFO1, INFO2, J, LOC, N
      DOUBLE PRECISION   EPS, RES
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   Q( LDT, LDT ), RESULT( 2 ), T1( LDT, LDT ),
     $                   T2( LDT, LDT ), TMP( LDT, LDT ), WORK( LWORK )
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           DHST01, DLACPY, DLASET, DTREXC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SIGN
*     ..
*     .. Executable Statements ..
*
      EPS = DLAMCH( 'P' )
      RMAX = ZERO
      LMAX = 0
      KNT = 0
      NINFO( 1 ) = 0
      NINFO( 2 ) = 0
      NINFO( 3 ) = 0
*
*     Read input data until N=0
*
   10 CONTINUE
      READ( NIN, FMT = * )N, IFST, ILST
      IF( N.EQ.0 )
     $   RETURN
      KNT = KNT + 1
      DO 20 I = 1, N
         READ( NIN, FMT = * )( TMP( I, J ), J = 1, N )
   20 CONTINUE
      CALL DLACPY( 'F', N, N, TMP, LDT, T1, LDT )
      CALL DLACPY( 'F', N, N, TMP, LDT, T2, LDT )
      IFSTSV = IFST
      ILSTSV = ILST
      IFST1 = IFST
      ILST1 = ILST
      IFST2 = IFST
      ILST2 = ILST
      RES = ZERO
*
*     Test without accumulating Q
*
      CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDT )
      CALL DTREXC( 'N', N, T1, LDT, Q, LDT, IFST1, ILST1, WORK, INFO1 )
      DO 40 I = 1, N
         DO 30 J = 1, N
            IF( I.EQ.J .AND. Q( I, J ).NE.ONE )
     $         RES = RES + ONE / EPS
            IF( I.NE.J .AND. Q( I, J ).NE.ZERO )
     $         RES = RES + ONE / EPS
   30    CONTINUE
   40 CONTINUE
*
*     Test with accumulating Q
*
      CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDT )
      CALL DTREXC( 'V', N, T2, LDT, Q, LDT, IFST2, ILST2, WORK, INFO2 )
*
*     Compare T1 with T2
*
      DO 60 I = 1, N
         DO 50 J = 1, N
            IF( T1( I, J ).NE.T2( I, J ) )
     $         RES = RES + ONE / EPS
   50    CONTINUE
   60 CONTINUE
      IF( IFST1.NE.IFST2 )
     $   RES = RES + ONE / EPS
      IF( ILST1.NE.ILST2 )
     $   RES = RES + ONE / EPS
      IF( INFO1.NE.INFO2 )
     $   RES = RES + ONE / EPS
*
*     Test for successful reordering of T2
*
      IF( INFO2.NE.0 ) THEN
         NINFO( INFO2 ) = NINFO( INFO2 ) + 1
      ELSE
         IF( ABS( IFST2-IFSTSV ).GT.1 )
     $      RES = RES + ONE / EPS
         IF( ABS( ILST2-ILSTSV ).GT.1 )
     $      RES = RES + ONE / EPS
      END IF
*
*     Test for small residual, and orthogonality of Q
*
      CALL DHST01( N, 1, N, TMP, LDT, T2, LDT, Q, LDT, WORK, LWORK,
     $             RESULT )
      RES = RES + RESULT( 1 ) + RESULT( 2 )
*
*     Test for T2 being in Schur form
*
      LOC = 1
   70 CONTINUE
      IF( T2( LOC+1, LOC ).NE.ZERO ) THEN
*
*        2 by 2 block
*
         IF( T2( LOC, LOC+1 ).EQ.ZERO .OR. T2( LOC, LOC ).NE.
     $       T2( LOC+1, LOC+1 ) .OR. SIGN( ONE, T2( LOC, LOC+1 ) ).EQ.
     $       SIGN( ONE, T2( LOC+1, LOC ) ) )RES = RES + ONE / EPS
         DO 80 I = LOC + 2, N
            IF( T2( I, LOC ).NE.ZERO )
     $         RES = RES + ONE / RES
            IF( T2( I, LOC+1 ).NE.ZERO )
     $         RES = RES + ONE / RES
   80    CONTINUE
         LOC = LOC + 2
      ELSE
*
*        1 by 1 block
*
         DO 90 I = LOC + 1, N
            IF( T2( I, LOC ).NE.ZERO )
     $         RES = RES + ONE / RES
   90    CONTINUE
         LOC = LOC + 1
      END IF
      IF( LOC.LT.N )
     $   GO TO 70
      IF( RES.GT.RMAX ) THEN
         RMAX = RES
         LMAX = KNT
      END IF
      GO TO 10
*
*     End of DGET36
*
      END
 |