| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 
 | *> \brief \b SGET10
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE SGET10( M, N, A, LDA, B, LDB, WORK, RESULT )
*
*       .. Scalar Arguments ..
*       INTEGER            LDA, LDB, M, N
*       REAL               RESULT
*       ..
*       .. Array Arguments ..
*       REAL               A( LDA, * ), B( LDB, * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SGET10 compares two matrices A and B and computes the ratio
*> RESULT = norm( A - B ) / ( norm(A) * M * EPS )
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrices A and B.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrices A and B.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is REAL array, dimension (LDA,N)
*>          The m by n matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is REAL array, dimension (LDB,N)
*>          The m by n matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is REAL
*>          RESULT = norm( A - B ) / ( norm(A) * M * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup single_eig
*
*  =====================================================================
      SUBROUTINE SGET10( M, N, A, LDA, B, LDB, WORK, RESULT )
*
*  -- LAPACK test routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LDB, M, N
      REAL               RESULT
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), B( LDB, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J
      REAL               ANORM, EPS, UNFL, WNORM
*     ..
*     .. External Functions ..
      REAL               SASUM, SLAMCH, SLANGE
      EXTERNAL           SASUM, SLAMCH, SLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           SAXPY, SCOPY
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, REAL
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( M.LE.0 .OR. N.LE.0 ) THEN
         RESULT = ZERO
         RETURN
      END IF
*
      UNFL = SLAMCH( 'Safe minimum' )
      EPS = SLAMCH( 'Precision' )
*
      WNORM = ZERO
      DO 10 J = 1, N
         CALL SCOPY( M, A( 1, J ), 1, WORK, 1 )
         CALL SAXPY( M, -ONE, B( 1, J ), 1, WORK, 1 )
         WNORM = MAX( WNORM, SASUM( N, WORK, 1 ) )
   10 CONTINUE
*
      ANORM = MAX( SLANGE( '1', M, N, A, LDA, WORK ), UNFL )
*
      IF( ANORM.GT.WNORM ) THEN
         RESULT = ( WNORM / ANORM ) / ( M*EPS )
      ELSE
         IF( ANORM.LT.ONE ) THEN
            RESULT = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*EPS )
         ELSE
            RESULT = MIN( WNORM / ANORM, REAL( M ) ) / ( M*EPS )
         END IF
      END IF
*
      RETURN
*
*     End of SGET10
*
      END
 |