| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 
 | *> \brief \b ZTRT03
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZTRT03( UPLO, TRANS, DIAG, N, NRHS, A, LDA, SCALE,
*                          CNORM, TSCAL, X, LDX, B, LDB, WORK, RESID )
*
*       .. Scalar Arguments ..
*       CHARACTER          DIAG, TRANS, UPLO
*       INTEGER            LDA, LDB, LDX, N, NRHS
*       DOUBLE PRECISION   RESID, SCALE, TSCAL
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   CNORM( * )
*       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * ),
*      $                   X( LDX, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZTRT03 computes the residual for the solution to a scaled triangular
*> system of equations A*x = s*b,  A**T *x = s*b,  or  A**H *x = s*b.
*> Here A is a triangular matrix, A**T denotes the transpose of A, A**H
*> denotes the conjugate transpose of A, s is a scalar, and x and b are
*> N by NRHS matrices.  The test ratio is the maximum over the number of
*> right hand sides of
*>    norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
*> where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the matrix A is upper or lower triangular.
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          Specifies the operation applied to A.
*>          = 'N':  A *x = s*b     (No transpose)
*>          = 'T':  A**T *x = s*b  (Transpose)
*>          = 'C':  A**H *x = s*b  (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*>          DIAG is CHARACTER*1
*>          Specifies whether or not the matrix A is unit triangular.
*>          = 'N':  Non-unit triangular
*>          = 'U':  Unit triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrices X and B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          The triangular matrix A.  If UPLO = 'U', the leading n by n
*>          upper triangular part of the array A contains the upper
*>          triangular matrix, and the strictly lower triangular part of
*>          A is not referenced.  If UPLO = 'L', the leading n by n lower
*>          triangular part of the array A contains the lower triangular
*>          matrix, and the strictly upper triangular part of A is not
*>          referenced.  If DIAG = 'U', the diagonal elements of A are
*>          also not referenced and are assumed to be 1.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] SCALE
*> \verbatim
*>          SCALE is DOUBLE PRECISION
*>          The scaling factor s used in solving the triangular system.
*> \endverbatim
*>
*> \param[in] CNORM
*> \verbatim
*>          CNORM is DOUBLE PRECISION array, dimension (N)
*>          The 1-norms of the columns of A, not counting the diagonal.
*> \endverbatim
*>
*> \param[in] TSCAL
*> \verbatim
*>          TSCAL is DOUBLE PRECISION
*>          The scaling factor used in computing the 1-norms in CNORM.
*>          CNORM actually contains the column norms of TSCAL*A.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*>          X is COMPLEX*16 array, dimension (LDX,NRHS)
*>          The computed solution vectors for the system of linear
*>          equations.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.  LDX >= max(1,N).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
*>          The right hand side vectors for the system of linear
*>          equations.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is DOUBLE PRECISION
*>          The maximum over the number of right hand sides of
*>          norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16_lin
*
*  =====================================================================
      SUBROUTINE ZTRT03( UPLO, TRANS, DIAG, N, NRHS, A, LDA, SCALE,
     $                   CNORM, TSCAL, X, LDX, B, LDB, WORK, RESID )
*
*  -- LAPACK test routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, TRANS, UPLO
      INTEGER            LDA, LDB, LDX, N, NRHS
      DOUBLE PRECISION   RESID, SCALE, TSCAL
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   CNORM( * )
      COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * ),
     $                   X( LDX, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            IX, J
      DOUBLE PRECISION   EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IZAMAX
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           LSAME, IZAMAX, DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZAXPY, ZCOPY, ZDSCAL, ZTRMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCMPLX, MAX
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0
*
      IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
      EPS = DLAMCH( 'Epsilon' )
      SMLNUM = DLAMCH( 'Safe minimum' )
*
*     Compute the norm of the triangular matrix A using the column
*     norms already computed by ZLATRS.
*
      TNORM = ZERO
      IF( LSAME( DIAG, 'N' ) ) THEN
         DO 10 J = 1, N
            TNORM = MAX( TNORM, TSCAL*ABS( A( J, J ) )+CNORM( J ) )
   10    CONTINUE
      ELSE
         DO 20 J = 1, N
            TNORM = MAX( TNORM, TSCAL+CNORM( J ) )
   20    CONTINUE
      END IF
*
*     Compute the maximum over the number of right hand sides of
*        norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
*
      RESID = ZERO
      DO 30 J = 1, NRHS
         CALL ZCOPY( N, X( 1, J ), 1, WORK, 1 )
         IX = IZAMAX( N, WORK, 1 )
         XNORM = MAX( ONE, ABS( X( IX, J ) ) )
         XSCAL = ( ONE / XNORM ) / DBLE( N )
         CALL ZDSCAL( N, XSCAL, WORK, 1 )
         CALL ZTRMV( UPLO, TRANS, DIAG, N, A, LDA, WORK, 1 )
         CALL ZAXPY( N, DCMPLX( -SCALE*XSCAL ), B( 1, J ), 1, WORK, 1 )
         IX = IZAMAX( N, WORK, 1 )
         ERR = TSCAL*ABS( WORK( IX ) )
         IX = IZAMAX( N, X( 1, J ), 1 )
         XNORM = ABS( X( IX, J ) )
         IF( ERR*SMLNUM.LE.XNORM ) THEN
            IF( XNORM.GT.ZERO )
     $         ERR = ERR / XNORM
         ELSE
            IF( ERR.GT.ZERO )
     $         ERR = ONE / EPS
         END IF
         IF( ERR*SMLNUM.LE.TNORM ) THEN
            IF( TNORM.GT.ZERO )
     $         ERR = ERR / TNORM
         ELSE
            IF( ERR.GT.ZERO )
     $         ERR = ONE / EPS
         END IF
         RESID = MAX( RESID, ERR )
   30 CONTINUE
*
      RETURN
*
*     End of ZTRT03
*
      END
 |