| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 
 | *> \brief <b> SGEGS computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SGEGS + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgegs.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgegs.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgegs.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
*                         ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
*                         LWORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          JOBVSL, JOBVSR
*       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
*       ..
*       .. Array Arguments ..
*       REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
*      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
*      $                   VSR( LDVSR, * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> This routine is deprecated and has been replaced by routine SGGES.
*>
*> SGEGS computes the eigenvalues, real Schur form, and, optionally,
*> left and or/right Schur vectors of a real matrix pair (A,B).
*> Given two square matrices A and B, the generalized real Schur
*> factorization has the form
*>
*>   A = Q*S*Z**T,  B = Q*T*Z**T
*>
*> where Q and Z are orthogonal matrices, T is upper triangular, and S
*> is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal
*> blocks, the 2-by-2 blocks corresponding to complex conjugate pairs
*> of eigenvalues of (A,B).  The columns of Q are the left Schur vectors
*> and the columns of Z are the right Schur vectors.
*>
*> If only the eigenvalues of (A,B) are needed, the driver routine
*> SGEGV should be used instead.  See SGEGV for a description of the
*> eigenvalues of the generalized nonsymmetric eigenvalue problem
*> (GNEP).
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] JOBVSL
*> \verbatim
*>          JOBVSL is CHARACTER*1
*>          = 'N':  do not compute the left Schur vectors;
*>          = 'V':  compute the left Schur vectors (returned in VSL).
*> \endverbatim
*>
*> \param[in] JOBVSR
*> \verbatim
*>          JOBVSR is CHARACTER*1
*>          = 'N':  do not compute the right Schur vectors;
*>          = 'V':  compute the right Schur vectors (returned in VSR).
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is REAL array, dimension (LDA, N)
*>          On entry, the matrix A.
*>          On exit, the upper quasi-triangular matrix S from the
*>          generalized real Schur factorization.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is REAL array, dimension (LDB, N)
*>          On entry, the matrix B.
*>          On exit, the upper triangular matrix T from the generalized
*>          real Schur factorization.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] ALPHAR
*> \verbatim
*>          ALPHAR is REAL array, dimension (N)
*>          The real parts of each scalar alpha defining an eigenvalue
*>          of GNEP.
*> \endverbatim
*>
*> \param[out] ALPHAI
*> \verbatim
*>          ALPHAI is REAL array, dimension (N)
*>          The imaginary parts of each scalar alpha defining an
*>          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th
*>          eigenvalue is real; if positive, then the j-th and (j+1)-st
*>          eigenvalues are a complex conjugate pair, with
*>          ALPHAI(j+1) = -ALPHAI(j).
*> \endverbatim
*>
*> \param[out] BETA
*> \verbatim
*>          BETA is REAL array, dimension (N)
*>          The scalars beta that define the eigenvalues of GNEP.
*>          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
*>          beta = BETA(j) represent the j-th eigenvalue of the matrix
*>          pair (A,B), in one of the forms lambda = alpha/beta or
*>          mu = beta/alpha.  Since either lambda or mu may overflow,
*>          they should not, in general, be computed.
*> \endverbatim
*>
*> \param[out] VSL
*> \verbatim
*>          VSL is REAL array, dimension (LDVSL,N)
*>          If JOBVSL = 'V', the matrix of left Schur vectors Q.
*>          Not referenced if JOBVSL = 'N'.
*> \endverbatim
*>
*> \param[in] LDVSL
*> \verbatim
*>          LDVSL is INTEGER
*>          The leading dimension of the matrix VSL. LDVSL >=1, and
*>          if JOBVSL = 'V', LDVSL >= N.
*> \endverbatim
*>
*> \param[out] VSR
*> \verbatim
*>          VSR is REAL array, dimension (LDVSR,N)
*>          If JOBVSR = 'V', the matrix of right Schur vectors Z.
*>          Not referenced if JOBVSR = 'N'.
*> \endverbatim
*>
*> \param[in] LDVSR
*> \verbatim
*>          LDVSR is INTEGER
*>          The leading dimension of the matrix VSR. LDVSR >= 1, and
*>          if JOBVSR = 'V', LDVSR >= N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (MAX(1,LWORK))
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK.  LWORK >= max(1,4*N).
*>          For good performance, LWORK must generally be larger.
*>          To compute the optimal value of LWORK, call ILAENV to get
*>          blocksizes (for SGEQRF, SORMQR, and SORGQR.)  Then compute:
*>          NB  -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR
*>          The optimal LWORK is  2*N + N*(NB+1).
*>
*>          If LWORK = -1, then a workspace query is assumed; the routine
*>          only calculates the optimal size of the WORK array, returns
*>          this value as the first entry of the WORK array, and no error
*>          message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*>          = 1,...,N:
*>                The QZ iteration failed.  (A,B) are not in Schur
*>                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
*>                be correct for j=INFO+1,...,N.
*>          > N:  errors that usually indicate LAPACK problems:
*>                =N+1: error return from SGGBAL
*>                =N+2: error return from SGEQRF
*>                =N+3: error return from SORMQR
*>                =N+4: error return from SORGQR
*>                =N+5: error return from SGGHRD
*>                =N+6: error return from SHGEQZ (other than failed
*>                                                iteration)
*>                =N+7: error return from SGGBAK (computing VSL)
*>                =N+8: error return from SGGBAK (computing VSR)
*>                =N+9: error return from SLASCL (various places)
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup realGEeigen
*
*  =====================================================================
      SUBROUTINE SGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
     $                  ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
     $                  LWORK, INFO )
*
*  -- LAPACK driver routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          JOBVSL, JOBVSR
      INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
     $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
     $                   VSR( LDVSR, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY
      INTEGER            ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT,
     $                   ILO, IRIGHT, IROWS, ITAU, IWORK, LOPT, LWKMIN,
     $                   LWKOPT, NB, NB1, NB2, NB3
      REAL               ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
     $                   SAFMIN, SMLNUM
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEQRF, SGGBAK, SGGBAL, SGGHRD, SHGEQZ, SLACPY,
     $                   SLASCL, SLASET, SORGQR, SORMQR, XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      REAL               SLAMCH, SLANGE
      EXTERNAL           ILAENV, LSAME, SLAMCH, SLANGE
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          INT, MAX
*     ..
*     .. Executable Statements ..
*
*     Decode the input arguments
*
      IF( LSAME( JOBVSL, 'N' ) ) THEN
         IJOBVL = 1
         ILVSL = .FALSE.
      ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
         IJOBVL = 2
         ILVSL = .TRUE.
      ELSE
         IJOBVL = -1
         ILVSL = .FALSE.
      END IF
*
      IF( LSAME( JOBVSR, 'N' ) ) THEN
         IJOBVR = 1
         ILVSR = .FALSE.
      ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
         IJOBVR = 2
         ILVSR = .TRUE.
      ELSE
         IJOBVR = -1
         ILVSR = .FALSE.
      END IF
*
*     Test the input arguments
*
      LWKMIN = MAX( 4*N, 1 )
      LWKOPT = LWKMIN
      WORK( 1 ) = LWKOPT
      LQUERY = ( LWORK.EQ.-1 )
      INFO = 0
      IF( IJOBVL.LE.0 ) THEN
         INFO = -1
      ELSE IF( IJOBVR.LE.0 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
         INFO = -12
      ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
         INFO = -14
      ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
         INFO = -16
      END IF
*
      IF( INFO.EQ.0 ) THEN
         NB1 = ILAENV( 1, 'SGEQRF', ' ', N, N, -1, -1 )
         NB2 = ILAENV( 1, 'SORMQR', ' ', N, N, N, -1 )
         NB3 = ILAENV( 1, 'SORGQR', ' ', N, N, N, -1 )
         NB = MAX( NB1, NB2, NB3 )
         LOPT = 2*N+N*(NB+1)
         WORK( 1 ) = LOPT
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SGEGS ', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Get machine constants
*
      EPS = SLAMCH( 'E' )*SLAMCH( 'B' )
      SAFMIN = SLAMCH( 'S' )
      SMLNUM = N*SAFMIN / EPS
      BIGNUM = ONE / SMLNUM
*
*     Scale A if max element outside range [SMLNUM,BIGNUM]
*
      ANRM = SLANGE( 'M', N, N, A, LDA, WORK )
      ILASCL = .FALSE.
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
         ANRMTO = SMLNUM
         ILASCL = .TRUE.
      ELSE IF( ANRM.GT.BIGNUM ) THEN
         ANRMTO = BIGNUM
         ILASCL = .TRUE.
      END IF
*
      IF( ILASCL ) THEN
         CALL SLASCL( 'G', -1, -1, ANRM, ANRMTO, N, N, A, LDA, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 9
            RETURN
         END IF
      END IF
*
*     Scale B if max element outside range [SMLNUM,BIGNUM]
*
      BNRM = SLANGE( 'M', N, N, B, LDB, WORK )
      ILBSCL = .FALSE.
      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
         BNRMTO = SMLNUM
         ILBSCL = .TRUE.
      ELSE IF( BNRM.GT.BIGNUM ) THEN
         BNRMTO = BIGNUM
         ILBSCL = .TRUE.
      END IF
*
      IF( ILBSCL ) THEN
         CALL SLASCL( 'G', -1, -1, BNRM, BNRMTO, N, N, B, LDB, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 9
            RETURN
         END IF
      END IF
*
*     Permute the matrix to make it more nearly triangular
*     Workspace layout:  (2*N words -- "work..." not actually used)
*        left_permutation, right_permutation, work...
*
      ILEFT = 1
      IRIGHT = N + 1
      IWORK = IRIGHT + N
      CALL SGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
     $             WORK( IRIGHT ), WORK( IWORK ), IINFO )
      IF( IINFO.NE.0 ) THEN
         INFO = N + 1
         GO TO 10
      END IF
*
*     Reduce B to triangular form, and initialize VSL and/or VSR
*     Workspace layout:  ("work..." must have at least N words)
*        left_permutation, right_permutation, tau, work...
*
      IROWS = IHI + 1 - ILO
      ICOLS = N + 1 - ILO
      ITAU = IWORK
      IWORK = ITAU + IROWS
      CALL SGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
     $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
      IF( IINFO.GE.0 )
     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
      IF( IINFO.NE.0 ) THEN
         INFO = N + 2
         GO TO 10
      END IF
*
      CALL SORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
     $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
     $             LWORK+1-IWORK, IINFO )
      IF( IINFO.GE.0 )
     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
      IF( IINFO.NE.0 ) THEN
         INFO = N + 3
         GO TO 10
      END IF
*
      IF( ILVSL ) THEN
         CALL SLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
         CALL SLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
     $                VSL( ILO+1, ILO ), LDVSL )
         CALL SORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
     $                WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
     $                IINFO )
         IF( IINFO.GE.0 )
     $      LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 4
            GO TO 10
         END IF
      END IF
*
      IF( ILVSR )
     $   CALL SLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
*
*     Reduce to generalized Hessenberg form
*
      CALL SGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
     $             LDVSL, VSR, LDVSR, IINFO )
      IF( IINFO.NE.0 ) THEN
         INFO = N + 5
         GO TO 10
      END IF
*
*     Perform QZ algorithm, computing Schur vectors if desired
*     Workspace layout:  ("work..." must have at least 1 word)
*        left_permutation, right_permutation, work...
*
      IWORK = ITAU
      CALL SHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
     $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
     $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
      IF( IINFO.GE.0 )
     $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
      IF( IINFO.NE.0 ) THEN
         IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
            INFO = IINFO
         ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
            INFO = IINFO - N
         ELSE
            INFO = N + 6
         END IF
         GO TO 10
      END IF
*
*     Apply permutation to VSL and VSR
*
      IF( ILVSL ) THEN
         CALL SGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
     $                WORK( IRIGHT ), N, VSL, LDVSL, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 7
            GO TO 10
         END IF
      END IF
      IF( ILVSR ) THEN
         CALL SGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
     $                WORK( IRIGHT ), N, VSR, LDVSR, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 8
            GO TO 10
         END IF
      END IF
*
*     Undo scaling
*
      IF( ILASCL ) THEN
         CALL SLASCL( 'H', -1, -1, ANRMTO, ANRM, N, N, A, LDA, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 9
            RETURN
         END IF
         CALL SLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAR, N,
     $                IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 9
            RETURN
         END IF
         CALL SLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAI, N,
     $                IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 9
            RETURN
         END IF
      END IF
*
      IF( ILBSCL ) THEN
         CALL SLASCL( 'U', -1, -1, BNRMTO, BNRM, N, N, B, LDB, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 9
            RETURN
         END IF
         CALL SLASCL( 'G', -1, -1, BNRMTO, BNRM, N, 1, BETA, N, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = N + 9
            RETURN
         END IF
      END IF
*
   10 CONTINUE
      WORK( 1 ) = LWKOPT
*
      RETURN
*
*     End of SGEGS
*
      END
 |