| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 
 | *> \brief \b CSYTRI_ROOK
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CSYTRI_ROOK + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csytri_rook.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csytri_rook.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csytri_rook.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CSYTRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, LDA, N
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       COMPLEX            A( LDA, * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CSYTRI_ROOK computes the inverse of a complex symmetric
*> matrix A using the factorization A = U*D*U**T or A = L*D*L**T
*> computed by CSYTRF_ROOK.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the details of the factorization are stored
*>          as an upper or lower triangular matrix.
*>          = 'U':  Upper triangular, form is A = U*D*U**T;
*>          = 'L':  Lower triangular, form is A = L*D*L**T.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          On entry, the block diagonal matrix D and the multipliers
*>          used to obtain the factor U or L as computed by CSYTRF_ROOK.
*>
*>          On exit, if INFO = 0, the (symmetric) inverse of the original
*>          matrix.  If UPLO = 'U', the upper triangular part of the
*>          inverse is formed and the part of A below the diagonal is not
*>          referenced; if UPLO = 'L' the lower triangular part of the
*>          inverse is formed and the part of A above the diagonal is
*>          not referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          Details of the interchanges and the block structure of D
*>          as determined by CSYTRF_ROOK.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -i, the i-th argument had an illegal value
*>          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
*>               inverse could not be computed.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexSYcomputational
*
*> \par Contributors:
*  ==================
*>
*> \verbatim
*>
*>   December 2016, Igor Kozachenko,
*>                  Computer Science Division,
*>                  University of California, Berkeley
*>
*>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
*>                  School of Mathematics,
*>                  University of Manchester
*>
*> \endverbatim
*
*  =====================================================================
      SUBROUTINE CSYTRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            A( LDA, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            CONE, CZERO
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ),
     $                   CZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            K, KP, KSTEP
      COMPLEX            AK, AKKP1, AKP1, D, T, TEMP
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      COMPLEX            CDOTU
      EXTERNAL           LSAME, CDOTU
*     ..
*     .. External Subroutines ..
      EXTERNAL           CCOPY, CSWAP, CSYMV, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CSYTRI_ROOK', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Check that the diagonal matrix D is nonsingular.
*
      IF( UPPER ) THEN
*
*        Upper triangular storage: examine D from bottom to top
*
         DO 10 INFO = N, 1, -1
            IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
     $         RETURN
   10    CONTINUE
      ELSE
*
*        Lower triangular storage: examine D from top to bottom.
*
         DO 20 INFO = 1, N
            IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
     $         RETURN
   20    CONTINUE
      END IF
      INFO = 0
*
      IF( UPPER ) THEN
*
*        Compute inv(A) from the factorization A = U*D*U**T.
*
*        K is the main loop index, increasing from 1 to N in steps of
*        1 or 2, depending on the size of the diagonal blocks.
*
         K = 1
   30    CONTINUE
*
*        If K > N, exit from loop.
*
         IF( K.GT.N )
     $      GO TO 40
*
         IF( IPIV( K ).GT.0 ) THEN
*
*           1 x 1 diagonal block
*
*           Invert the diagonal block.
*
            A( K, K ) = CONE / A( K, K )
*
*           Compute column K of the inverse.
*
            IF( K.GT.1 ) THEN
               CALL CCOPY( K-1, A( 1, K ), 1, WORK, 1 )
               CALL CSYMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, CZERO,
     $                     A( 1, K ), 1 )
               A( K, K ) = A( K, K ) - CDOTU( K-1, WORK, 1, A( 1, K ),
     $                     1 )
            END IF
            KSTEP = 1
         ELSE
*
*           2 x 2 diagonal block
*
*           Invert the diagonal block.
*
            T = A( K, K+1 )
            AK = A( K, K ) / T
            AKP1 = A( K+1, K+1 ) / T
            AKKP1 = A( K, K+1 ) / T
            D = T*( AK*AKP1-CONE )
            A( K, K ) = AKP1 / D
            A( K+1, K+1 ) = AK / D
            A( K, K+1 ) = -AKKP1 / D
*
*           Compute columns K and K+1 of the inverse.
*
            IF( K.GT.1 ) THEN
               CALL CCOPY( K-1, A( 1, K ), 1, WORK, 1 )
               CALL CSYMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, CZERO,
     $                     A( 1, K ), 1 )
               A( K, K ) = A( K, K ) - CDOTU( K-1, WORK, 1, A( 1, K ),
     $                     1 )
               A( K, K+1 ) = A( K, K+1 ) -
     $                       CDOTU( K-1, A( 1, K ), 1, A( 1, K+1 ), 1 )
               CALL CCOPY( K-1, A( 1, K+1 ), 1, WORK, 1 )
               CALL CSYMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, CZERO,
     $                     A( 1, K+1 ), 1 )
               A( K+1, K+1 ) = A( K+1, K+1 ) -
     $                         CDOTU( K-1, WORK, 1, A( 1, K+1 ), 1 )
            END IF
            KSTEP = 2
         END IF
*
         IF( KSTEP.EQ.1 ) THEN
*
*           Interchange rows and columns K and IPIV(K) in the leading
*           submatrix A(1:k+1,1:k+1)
*
            KP = IPIV( K )
            IF( KP.NE.K ) THEN
               IF( KP.GT.1 )
     $             CALL CSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
               CALL CSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
               TEMP = A( K, K )
               A( K, K ) = A( KP, KP )
               A( KP, KP ) = TEMP
            END IF
         ELSE
*
*           Interchange rows and columns K and K+1 with -IPIV(K) and
*           -IPIV(K+1)in the leading submatrix A(1:k+1,1:k+1)
*
            KP = -IPIV( K )
            IF( KP.NE.K ) THEN
               IF( KP.GT.1 )
     $            CALL CSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
               CALL CSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
*
               TEMP = A( K, K )
               A( K, K ) = A( KP, KP )
               A( KP, KP ) = TEMP
               TEMP = A( K, K+1 )
               A( K, K+1 ) = A( KP, K+1 )
               A( KP, K+1 ) = TEMP
            END IF
*
            K = K + 1
            KP = -IPIV( K )
            IF( KP.NE.K ) THEN
               IF( KP.GT.1 )
     $            CALL CSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
               CALL CSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
               TEMP = A( K, K )
               A( K, K ) = A( KP, KP )
               A( KP, KP ) = TEMP
            END IF
         END IF
*
         K = K + 1
         GO TO 30
   40    CONTINUE
*
      ELSE
*
*        Compute inv(A) from the factorization A = L*D*L**T.
*
*        K is the main loop index, increasing from 1 to N in steps of
*        1 or 2, depending on the size of the diagonal blocks.
*
         K = N
   50    CONTINUE
*
*        If K < 1, exit from loop.
*
         IF( K.LT.1 )
     $      GO TO 60
*
         IF( IPIV( K ).GT.0 ) THEN
*
*           1 x 1 diagonal block
*
*           Invert the diagonal block.
*
            A( K, K ) = CONE / A( K, K )
*
*           Compute column K of the inverse.
*
            IF( K.LT.N ) THEN
               CALL CCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
               CALL CSYMV( UPLO, N-K,-CONE, A( K+1, K+1 ), LDA, WORK, 1,
     $                     CZERO, A( K+1, K ), 1 )
               A( K, K ) = A( K, K ) - CDOTU( N-K, WORK, 1, A( K+1, K ),
     $                     1 )
            END IF
            KSTEP = 1
         ELSE
*
*           2 x 2 diagonal block
*
*           Invert the diagonal block.
*
            T = A( K, K-1 )
            AK = A( K-1, K-1 ) / T
            AKP1 = A( K, K ) / T
            AKKP1 = A( K, K-1 ) / T
            D = T*( AK*AKP1-CONE )
            A( K-1, K-1 ) = AKP1 / D
            A( K, K ) = AK / D
            A( K, K-1 ) = -AKKP1 / D
*
*           Compute columns K-1 and K of the inverse.
*
            IF( K.LT.N ) THEN
               CALL CCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
               CALL CSYMV( UPLO, N-K,-CONE, A( K+1, K+1 ), LDA, WORK, 1,
     $                     CZERO, A( K+1, K ), 1 )
               A( K, K ) = A( K, K ) - CDOTU( N-K, WORK, 1, A( K+1, K ),
     $                     1 )
               A( K, K-1 ) = A( K, K-1 ) -
     $                       CDOTU( N-K, A( K+1, K ), 1, A( K+1, K-1 ),
     $                       1 )
               CALL CCOPY( N-K, A( K+1, K-1 ), 1, WORK, 1 )
               CALL CSYMV( UPLO, N-K,-CONE, A( K+1, K+1 ), LDA, WORK, 1,
     $                     CZERO, A( K+1, K-1 ), 1 )
               A( K-1, K-1 ) = A( K-1, K-1 ) -
     $                         CDOTU( N-K, WORK, 1, A( K+1, K-1 ), 1 )
            END IF
            KSTEP = 2
         END IF
*
         IF( KSTEP.EQ.1 ) THEN
*
*           Interchange rows and columns K and IPIV(K) in the trailing
*           submatrix A(k-1:n,k-1:n)
*
            KP = IPIV( K )
            IF( KP.NE.K ) THEN
               IF( KP.LT.N )
     $            CALL CSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
               CALL CSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
               TEMP = A( K, K )
               A( K, K ) = A( KP, KP )
               A( KP, KP ) = TEMP
            END IF
         ELSE
*
*           Interchange rows and columns K and K-1 with -IPIV(K) and
*           -IPIV(K-1) in the trailing submatrix A(k-1:n,k-1:n)
*
            KP = -IPIV( K )
            IF( KP.NE.K ) THEN
               IF( KP.LT.N )
     $            CALL CSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
               CALL CSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
*
               TEMP = A( K, K )
               A( K, K ) = A( KP, KP )
               A( KP, KP ) = TEMP
               TEMP = A( K, K-1 )
               A( K, K-1 ) = A( KP, K-1 )
               A( KP, K-1 ) = TEMP
            END IF
*
            K = K - 1
            KP = -IPIV( K )
            IF( KP.NE.K ) THEN
               IF( KP.LT.N )
     $            CALL CSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
               CALL CSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
               TEMP = A( K, K )
               A( K, K ) = A( KP, KP )
               A( KP, KP ) = TEMP
            END IF
         END IF
*
         K = K - 1
         GO TO 50
   60    CONTINUE
      END IF
*
      RETURN
*
*     End of CSYTRI_ROOK
*
      END
 |