| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 
 | *> \brief \b ZQRT11
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       DOUBLE PRECISION FUNCTION ZQRT11( M, K, A, LDA, TAU, WORK, LWORK )
*
*       .. Scalar Arguments ..
*       INTEGER            K, LDA, LWORK, M
*       ..
*       .. Array Arguments ..
*       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( LWORK )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZQRT11 computes the test ratio
*>
*>       || Q'*Q - I || / (eps * m)
*>
*> where the orthogonal matrix Q is represented as a product of
*> elementary transformations.  Each transformation has the form
*>
*>    H(k) = I - tau(k) v(k) v(k)'
*>
*> where tau(k) is stored in TAU(k) and v(k) is an m-vector of the form
*> [ 0 ... 0 1 x(k) ]', where x(k) is a vector of length m-k stored
*> in A(k+1:m,k).
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The number of columns of A whose subdiagonal entries
*>          contain information about orthogonal transformations.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,K)
*>          The (possibly partial) output of a QR reduction routine.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*>          TAU is COMPLEX*16 array, dimension (K)
*>          The scaling factors tau for the elementary transformations as
*>          computed by the QR factorization routine.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The length of the array WORK.  LWORK >= M*M + M.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16_lin
*
*  =====================================================================
      DOUBLE PRECISION FUNCTION ZQRT11( M, K, A, LDA, TAU, WORK, LWORK )
*
*  -- LAPACK test routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            K, LDA, LWORK, M
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), TAU( * ), WORK( LWORK )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO, J
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, ZLANGE
      EXTERNAL           DLAMCH, ZLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZLASET, ZUNM2R
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, DCMPLX
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   RDUMMY( 1 )
*     ..
*     .. Executable Statements ..
*
      ZQRT11 = ZERO
*
*     Test for sufficient workspace
*
      IF( LWORK.LT.M*M+M ) THEN
         CALL XERBLA( 'ZQRT11', 7 )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.LE.0 )
     $   RETURN
*
      CALL ZLASET( 'Full', M, M, DCMPLX( ZERO ), DCMPLX( ONE ), WORK,
     $             M )
*
*     Form Q
*
      CALL ZUNM2R( 'Left', 'No transpose', M, M, K, A, LDA, TAU, WORK,
     $             M, WORK( M*M+1 ), INFO )
*
*     Form Q'*Q
*
      CALL ZUNM2R( 'Left', 'Conjugate transpose', M, M, K, A, LDA, TAU,
     $             WORK, M, WORK( M*M+1 ), INFO )
*
      DO 10 J = 1, M
         WORK( ( J-1 )*M+J ) = WORK( ( J-1 )*M+J ) - ONE
   10 CONTINUE
*
      ZQRT11 = ZLANGE( 'One-norm', M, M, WORK, M, RDUMMY ) /
     $         ( DBLE( M )*DLAMCH( 'Epsilon' ) )
*
      RETURN
*
*     End of ZQRT11
*
      END
 |