| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 
 | *> \brief \b ZGGBAK
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZGGBAK + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggbak.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggbak.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggbak.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZGGBAK( JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
*                          LDV, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          JOB, SIDE
*       INTEGER            IHI, ILO, INFO, LDV, M, N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   LSCALE( * ), RSCALE( * )
*       COMPLEX*16         V( LDV, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZGGBAK forms the right or left eigenvectors of a complex generalized
*> eigenvalue problem A*x = lambda*B*x, by backward transformation on
*> the computed eigenvectors of the balanced pair of matrices output by
*> ZGGBAL.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] JOB
*> \verbatim
*>          JOB is CHARACTER*1
*>          Specifies the type of backward transformation required:
*>          = 'N':  do nothing, return immediately;
*>          = 'P':  do backward transformation for permutation only;
*>          = 'S':  do backward transformation for scaling only;
*>          = 'B':  do backward transformations for both permutation and
*>                  scaling.
*>          JOB must be the same as the argument JOB supplied to ZGGBAL.
*> \endverbatim
*>
*> \param[in] SIDE
*> \verbatim
*>          SIDE is CHARACTER*1
*>          = 'R':  V contains right eigenvectors;
*>          = 'L':  V contains left eigenvectors.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of rows of the matrix V.  N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
*> \verbatim
*>          ILO is INTEGER
*> \endverbatim
*>
*> \param[in] IHI
*> \verbatim
*>          IHI is INTEGER
*>          The integers ILO and IHI determined by ZGGBAL.
*>          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
*> \endverbatim
*>
*> \param[in] LSCALE
*> \verbatim
*>          LSCALE is DOUBLE PRECISION array, dimension (N)
*>          Details of the permutations and/or scaling factors applied
*>          to the left side of A and B, as returned by ZGGBAL.
*> \endverbatim
*>
*> \param[in] RSCALE
*> \verbatim
*>          RSCALE is DOUBLE PRECISION array, dimension (N)
*>          Details of the permutations and/or scaling factors applied
*>          to the right side of A and B, as returned by ZGGBAL.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of columns of the matrix V.  M >= 0.
*> \endverbatim
*>
*> \param[in,out] V
*> \verbatim
*>          V is COMPLEX*16 array, dimension (LDV,M)
*>          On entry, the matrix of right or left eigenvectors to be
*>          transformed, as returned by ZTGEVC.
*>          On exit, V is overwritten by the transformed eigenvectors.
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*>          LDV is INTEGER
*>          The leading dimension of the matrix V. LDV >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit.
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16GBcomputational
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  See R.C. Ward, Balancing the generalized eigenvalue problem,
*>                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE ZGGBAK( JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
     $                   LDV, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          JOB, SIDE
      INTEGER            IHI, ILO, INFO, LDV, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   LSCALE( * ), RSCALE( * )
      COMPLEX*16         V( LDV, * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            LEFTV, RIGHTV
      INTEGER            I, K
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZDSCAL, ZSWAP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, INT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      RIGHTV = LSAME( SIDE, 'R' )
      LEFTV = LSAME( SIDE, 'L' )
*
      INFO = 0
      IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
     $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( ILO.LT.1 ) THEN
         INFO = -4
      ELSE IF( N.EQ.0 .AND. IHI.EQ.0 .AND. ILO.NE.1 ) THEN
         INFO = -4
      ELSE IF( N.GT.0 .AND. ( IHI.LT.ILO .OR. IHI.GT.MAX( 1, N ) ) )
     $   THEN
         INFO = -5
      ELSE IF( N.EQ.0 .AND. ILO.EQ.1 .AND. IHI.NE.0 ) THEN
         INFO = -5
      ELSE IF( M.LT.0 ) THEN
         INFO = -8
      ELSE IF( LDV.LT.MAX( 1, N ) ) THEN
         INFO = -10
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZGGBAK', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
      IF( M.EQ.0 )
     $   RETURN
      IF( LSAME( JOB, 'N' ) )
     $   RETURN
*
      IF( ILO.EQ.IHI )
     $   GO TO 30
*
*     Backward balance
*
      IF( LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' ) ) THEN
*
*        Backward transformation on right eigenvectors
*
         IF( RIGHTV ) THEN
            DO 10 I = ILO, IHI
               CALL ZDSCAL( M, RSCALE( I ), V( I, 1 ), LDV )
   10       CONTINUE
         END IF
*
*        Backward transformation on left eigenvectors
*
         IF( LEFTV ) THEN
            DO 20 I = ILO, IHI
               CALL ZDSCAL( M, LSCALE( I ), V( I, 1 ), LDV )
   20       CONTINUE
         END IF
      END IF
*
*     Backward permutation
*
   30 CONTINUE
      IF( LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' ) ) THEN
*
*        Backward permutation on right eigenvectors
*
         IF( RIGHTV ) THEN
            IF( ILO.EQ.1 )
     $         GO TO 50
            DO 40 I = ILO - 1, 1, -1
               K = INT(RSCALE( I ))
               IF( K.EQ.I )
     $            GO TO 40
               CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
   40       CONTINUE
*
   50       CONTINUE
            IF( IHI.EQ.N )
     $         GO TO 70
            DO 60 I = IHI + 1, N
               K = INT(RSCALE( I ))
               IF( K.EQ.I )
     $            GO TO 60
               CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
   60       CONTINUE
         END IF
*
*        Backward permutation on left eigenvectors
*
   70    CONTINUE
         IF( LEFTV ) THEN
            IF( ILO.EQ.1 )
     $         GO TO 90
            DO 80 I = ILO - 1, 1, -1
               K = INT(LSCALE( I ))
               IF( K.EQ.I )
     $            GO TO 80
               CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
   80       CONTINUE
*
   90       CONTINUE
            IF( IHI.EQ.N )
     $         GO TO 110
            DO 100 I = IHI + 1, N
               K = INT(LSCALE( I ))
               IF( K.EQ.I )
     $            GO TO 100
               CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
  100       CONTINUE
         END IF
      END IF
*
  110 CONTINUE
*
      RETURN
*
*     End of ZGGBAK
*
      END
 |