| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 
 | *> \brief \b ZQRT03
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZQRT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
*                          RWORK, RESULT )
*
*       .. Scalar Arguments ..
*       INTEGER            K, LDA, LWORK, M, N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   RESULT( * ), RWORK( * )
*       COMPLEX*16         AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
*      $                   Q( LDA, * ), TAU( * ), WORK( LWORK )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZQRT03 tests ZUNMQR, which computes Q*C, Q'*C, C*Q or C*Q'.
*>
*> ZQRT03 compares the results of a call to ZUNMQR with the results of
*> forming Q explicitly by a call to ZUNGQR and then performing matrix
*> multiplication by a call to ZGEMM.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The order of the orthogonal matrix Q.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of rows or columns of the matrix C; C is m-by-n if
*>          Q is applied from the left, or n-by-m if Q is applied from
*>          the right.  N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The number of elementary reflectors whose product defines the
*>          orthogonal matrix Q.  M >= K >= 0.
*> \endverbatim
*>
*> \param[in] AF
*> \verbatim
*>          AF is COMPLEX*16 array, dimension (LDA,N)
*>          Details of the QR factorization of an m-by-n matrix, as
*>          returned by ZGEQRF. See ZGEQRF for further details.
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*>          C is COMPLEX*16 array, dimension (LDA,N)
*> \endverbatim
*>
*> \param[out] CC
*> \verbatim
*>          CC is COMPLEX*16 array, dimension (LDA,N)
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*>          Q is COMPLEX*16 array, dimension (LDA,M)
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the arrays AF, C, CC, and Q.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*>          TAU is COMPLEX*16 array, dimension (min(M,N))
*>          The scalar factors of the elementary reflectors corresponding
*>          to the QR factorization in AF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The length of WORK.  LWORK must be at least M, and should be
*>          M*NB, where NB is the blocksize for this environment.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is DOUBLE PRECISION array, dimension (4)
*>          The test ratios compare two techniques for multiplying a
*>          random matrix C by an m-by-m orthogonal matrix Q.
*>          RESULT(1) = norm( Q*C - Q*C )  / ( M * norm(C) * EPS )
*>          RESULT(2) = norm( C*Q - C*Q )  / ( M * norm(C) * EPS )
*>          RESULT(3) = norm( Q'*C - Q'*C )/ ( M * norm(C) * EPS )
*>          RESULT(4) = norm( C*Q' - C*Q' )/ ( M * norm(C) * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16_lin
*
*  =====================================================================
      SUBROUTINE ZQRT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RESULT( * ), RWORK( * )
      COMPLEX*16         AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
     $                   Q( LDA, * ), TAU( * ), WORK( LWORK )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16         ROGUE
      PARAMETER          ( ROGUE = ( -1.0D+10, -1.0D+10 ) )
*     ..
*     .. Local Scalars ..
      CHARACTER          SIDE, TRANS
      INTEGER            INFO, ISIDE, ITRANS, J, MC, NC
      DOUBLE PRECISION   CNORM, EPS, RESID
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, ZLANGE
      EXTERNAL           LSAME, DLAMCH, ZLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZGEMM, ZLACPY, ZLARNV, ZLASET, ZUNGQR, ZUNMQR
*     ..
*     .. Local Arrays ..
      INTEGER            ISEED( 4 )
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, DCMPLX, MAX
*     ..
*     .. Scalars in Common ..
      CHARACTER*32       SRNAMT
*     ..
*     .. Common blocks ..
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Data statements ..
      DATA               ISEED / 1988, 1989, 1990, 1991 /
*     ..
*     .. Executable Statements ..
*
      EPS = DLAMCH( 'Epsilon' )
*
*     Copy the first k columns of the factorization to the array Q
*
      CALL ZLASET( 'Full', M, M, ROGUE, ROGUE, Q, LDA )
      CALL ZLACPY( 'Lower', M-1, K, AF( 2, 1 ), LDA, Q( 2, 1 ), LDA )
*
*     Generate the m-by-m matrix Q
*
      SRNAMT = 'ZUNGQR'
      CALL ZUNGQR( M, M, K, Q, LDA, TAU, WORK, LWORK, INFO )
*
      DO 30 ISIDE = 1, 2
         IF( ISIDE.EQ.1 ) THEN
            SIDE = 'L'
            MC = M
            NC = N
         ELSE
            SIDE = 'R'
            MC = N
            NC = M
         END IF
*
*        Generate MC by NC matrix C
*
         DO 10 J = 1, NC
            CALL ZLARNV( 2, ISEED, MC, C( 1, J ) )
   10    CONTINUE
         CNORM = ZLANGE( '1', MC, NC, C, LDA, RWORK )
         IF( CNORM.EQ.ZERO )
     $      CNORM = ONE
*
         DO 20 ITRANS = 1, 2
            IF( ITRANS.EQ.1 ) THEN
               TRANS = 'N'
            ELSE
               TRANS = 'C'
            END IF
*
*           Copy C
*
            CALL ZLACPY( 'Full', MC, NC, C, LDA, CC, LDA )
*
*           Apply Q or Q' to C
*
            SRNAMT = 'ZUNMQR'
            CALL ZUNMQR( SIDE, TRANS, MC, NC, K, AF, LDA, TAU, CC, LDA,
     $                   WORK, LWORK, INFO )
*
*           Form explicit product and subtract
*
            IF( LSAME( SIDE, 'L' ) ) THEN
               CALL ZGEMM( TRANS, 'No transpose', MC, NC, MC,
     $                     DCMPLX( -ONE ), Q, LDA, C, LDA,
     $                     DCMPLX( ONE ), CC, LDA )
            ELSE
               CALL ZGEMM( 'No transpose', TRANS, MC, NC, NC,
     $                     DCMPLX( -ONE ), C, LDA, Q, LDA,
     $                     DCMPLX( ONE ), CC, LDA )
            END IF
*
*           Compute error in the difference
*
            RESID = ZLANGE( '1', MC, NC, CC, LDA, RWORK )
            RESULT( ( ISIDE-1 )*2+ITRANS ) = RESID /
     $         ( DBLE( MAX( 1, M ) )*CNORM*EPS )
*
   20    CONTINUE
   30 CONTINUE
*
      RETURN
*
*     End of ZQRT03
*
      END
 |