1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
*> \brief \b DZNRM2
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* DOUBLE PRECISION FUNCTION DZNRM2(N,X,INCX)
*
* .. Scalar Arguments ..
* INTEGER INCX,N
* ..
* .. Array Arguments ..
* COMPLEX*16 X(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DZNRM2 returns the euclidean norm of a vector via the function
*> name, so that
*>
*> DZNRM2 := sqrt( x**H*x )
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> number of elements in input vector(s)
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX*16 array, dimension (N)
*> complex vector with N elements
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> storage spacing between elements of X
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2017
*
*> \ingroup double_blas_level1
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> -- This version written on 25-October-1982.
*> Modified on 14-October-1993 to inline the call to ZLASSQ.
*> Sven Hammarling, Nag Ltd.
*> \endverbatim
*>
* =====================================================================
DOUBLE PRECISION FUNCTION DZNRM2(N,X,INCX)
*
* -- Reference BLAS level1 routine (version 3.8.0) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2017
*
* .. Scalar Arguments ..
INTEGER INCX,N
* ..
* .. Array Arguments ..
COMPLEX*16 X(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE,ZERO
PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
* ..
* .. Local Scalars ..
DOUBLE PRECISION NORM,SCALE,SSQ,TEMP
INTEGER IX
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS,DBLE,DIMAG,SQRT
* ..
IF (N.LT.1 .OR. INCX.LT.1) THEN
NORM = ZERO
ELSE
SCALE = ZERO
SSQ = ONE
* The following loop is equivalent to this call to the LAPACK
* auxiliary routine:
* CALL ZLASSQ( N, X, INCX, SCALE, SSQ )
*
DO 10 IX = 1,1 + (N-1)*INCX,INCX
IF (DBLE(X(IX)).NE.ZERO) THEN
TEMP = ABS(DBLE(X(IX)))
IF (SCALE.LT.TEMP) THEN
SSQ = ONE + SSQ* (SCALE/TEMP)**2
SCALE = TEMP
ELSE
SSQ = SSQ + (TEMP/SCALE)**2
END IF
END IF
IF (DIMAG(X(IX)).NE.ZERO) THEN
TEMP = ABS(DIMAG(X(IX)))
IF (SCALE.LT.TEMP) THEN
SSQ = ONE + SSQ* (SCALE/TEMP)**2
SCALE = TEMP
ELSE
SSQ = SSQ + (TEMP/SCALE)**2
END IF
END IF
10 CONTINUE
NORM = SCALE*SQRT(SSQ)
END IF
*
DZNRM2 = NORM
RETURN
*
* End of DZNRM2.
*
END
|