1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
*> \brief \b CGELQT
*
* Definition:
* ===========
*
* SUBROUTINE CGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDT, M, N, MB
* ..
* .. Array Arguments ..
* COMPLEX A( LDA, * ), T( LDT, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGELQT computes a blocked LQ factorization of a complex M-by-N matrix A
*> using the compact WY representation of Q.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] MB
*> \verbatim
*> MB is INTEGER
*> The block size to be used in the blocked QR. MIN(M,N) >= MB >= 1.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit, the elements on and below the diagonal of the array
*> contain the M-by-MIN(M,N) lower trapezoidal matrix L (L is
*> lower triangular if M <= N); the elements above the diagonal
*> are the rows of V.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*> T is COMPLEX array, dimension (LDT,MIN(M,N))
*> The upper triangular block reflectors stored in compact form
*> as a sequence of upper triangular blocks. See below
*> for further details.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of the array T. LDT >= MB.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (MB*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2017
*
*> \ingroup doubleGEcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The matrix V stores the elementary reflectors H(i) in the i-th row
*> above the diagonal. For example, if M=5 and N=3, the matrix V is
*>
*> V = ( 1 v1 v1 v1 v1 )
*> ( 1 v2 v2 v2 )
*> ( 1 v3 v3 )
*>
*>
*> where the vi's represent the vectors which define H(i), which are returned
*> in the matrix A. The 1's along the diagonal of V are not stored in A.
*> Let K=MIN(M,N). The number of blocks is B = ceiling(K/MB), where each
*> block is of order MB except for the last block, which is of order
*> IB = K - (B-1)*MB. For each of the B blocks, a upper triangular block
*> reflector factor is computed: T1, T2, ..., TB. The MB-by-MB (and IB-by-IB
*> for the last block) T's are stored in the MB-by-K matrix T as
*>
*> T = (T1 T2 ... TB).
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO )
*
* -- LAPACK computational routine (version 3.7.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* June 2017
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDT, M, N, MB
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), T( LDT, * ), WORK( * )
* ..
*
* =====================================================================
*
* ..
* .. Local Scalars ..
INTEGER I, IB, IINFO, K
* ..
* .. External Subroutines ..
EXTERNAL CGELQT3, CLARFB, XERBLA
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( MB.LT.1 .OR. (MB.GT.MIN(M,N) .AND. MIN(M,N).GT.0 ))THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -5
ELSE IF( LDT.LT.MB ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CGELQT', -INFO )
RETURN
END IF
*
* Quick return if possible
*
K = MIN( M, N )
IF( K.EQ.0 ) RETURN
*
* Blocked loop of length K
*
DO I = 1, K, MB
IB = MIN( K-I+1, MB )
*
* Compute the LQ factorization of the current block A(I:M,I:I+IB-1)
*
CALL CGELQT3( IB, N-I+1, A(I,I), LDA, T(1,I), LDT, IINFO )
IF( I+IB.LE.M ) THEN
*
* Update by applying H**T to A(I:M,I+IB:N) from the right
*
CALL CLARFB( 'R', 'N', 'F', 'R', M-I-IB+1, N-I+1, IB,
$ A( I, I ), LDA, T( 1, I ), LDT,
$ A( I+IB, I ), LDA, WORK , M-I-IB+1 )
END IF
END DO
RETURN
*
* End of CGELQT
*
END
|