1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
|
*> \brief <b> CGESVDQ computes the singular value decomposition (SVD) with a QR-Preconditioned QR SVD Method for GE matrices</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CGESVDQ + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesvdq.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesvdq.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesvdq.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CGESVDQ( JOBA, JOBP, JOBR, JOBU, JOBV, M, N, A, LDA,
* S, U, LDU, V, LDV, NUMRANK, IWORK, LIWORK,
* CWORK, LCWORK, RWORK, LRWORK, INFO )
*
* .. Scalar Arguments ..
* IMPLICIT NONE
* CHARACTER JOBA, JOBP, JOBR, JOBU, JOBV
* INTEGER M, N, LDA, LDU, LDV, NUMRANK, LIWORK, LCWORK, LRWORK,
* INFO
* ..
* .. Array Arguments ..
* COMPLEX A( LDA, * ), U( LDU, * ), V( LDV, * ), CWORK( * )
* REAL S( * ), RWORK( * )
* INTEGER IWORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGESVDQ computes the singular value decomposition (SVD) of a complex
*> M-by-N matrix A, where M >= N. The SVD of A is written as
*> [++] [xx] [x0] [xx]
*> A = U * SIGMA * V^*, [++] = [xx] * [ox] * [xx]
*> [++] [xx]
*> where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal
*> matrix, and V is an N-by-N unitary matrix. The diagonal elements
*> of SIGMA are the singular values of A. The columns of U and V are the
*> left and the right singular vectors of A, respectively.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOBA
*> \verbatim
*> JOBA is CHARACTER*1
*> Specifies the level of accuracy in the computed SVD
*> = 'A' The requested accuracy corresponds to having the backward
*> error bounded by || delta A ||_F <= f(m,n) * EPS * || A ||_F,
*> where EPS = SLAMCH('Epsilon'). This authorises CGESVDQ to
*> truncate the computed triangular factor in a rank revealing
*> QR factorization whenever the truncated part is below the
*> threshold of the order of EPS * ||A||_F. This is aggressive
*> truncation level.
*> = 'M' Similarly as with 'A', but the truncation is more gentle: it
*> is allowed only when there is a drop on the diagonal of the
*> triangular factor in the QR factorization. This is medium
*> truncation level.
*> = 'H' High accuracy requested. No numerical rank determination based
*> on the rank revealing QR factorization is attempted.
*> = 'E' Same as 'H', and in addition the condition number of column
*> scaled A is estimated and returned in RWORK(1).
*> N^(-1/4)*RWORK(1) <= ||pinv(A_scaled)||_2 <= N^(1/4)*RWORK(1)
*> \endverbatim
*>
*> \param[in] JOBP
*> \verbatim
*> JOBP is CHARACTER*1
*> = 'P' The rows of A are ordered in decreasing order with respect to
*> ||A(i,:)||_\infty. This enhances numerical accuracy at the cost
*> of extra data movement. Recommended for numerical robustness.
*> = 'N' No row pivoting.
*> \endverbatim
*>
*> \param[in] JOBR
*> \verbatim
*> JOBR is CHARACTER*1
*> = 'T' After the initial pivoted QR factorization, CGESVD is applied to
*> the adjoint R**H of the computed triangular factor R. This involves
*> some extra data movement (matrix transpositions). Useful for
*> experiments, research and development.
*> = 'N' The triangular factor R is given as input to CGESVD. This may be
*> preferred as it involves less data movement.
*> \endverbatim
*>
*> \param[in] JOBU
*> \verbatim
*> JOBU is CHARACTER*1
*> = 'A' All M left singular vectors are computed and returned in the
*> matrix U. See the description of U.
*> = 'S' or 'U' N = min(M,N) left singular vectors are computed and returned
*> in the matrix U. See the description of U.
*> = 'R' Numerical rank NUMRANK is determined and only NUMRANK left singular
*> vectors are computed and returned in the matrix U.
*> = 'F' The N left singular vectors are returned in factored form as the
*> product of the Q factor from the initial QR factorization and the
*> N left singular vectors of (R**H , 0)**H. If row pivoting is used,
*> then the necessary information on the row pivoting is stored in
*> IWORK(N+1:N+M-1).
*> = 'N' The left singular vectors are not computed.
*> \endverbatim
*>
*> \param[in] JOBV
*> \verbatim
*> JOBV is CHARACTER*1
*> = 'A', 'V' All N right singular vectors are computed and returned in
*> the matrix V.
*> = 'R' Numerical rank NUMRANK is determined and only NUMRANK right singular
*> vectors are computed and returned in the matrix V. This option is
*> allowed only if JOBU = 'R' or JOBU = 'N'; otherwise it is illegal.
*> = 'N' The right singular vectors are not computed.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the input matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the input matrix A. M >= N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array of dimensions LDA x N
*> On entry, the input matrix A.
*> On exit, if JOBU .NE. 'N' or JOBV .NE. 'N', the lower triangle of A contains
*> the Householder vectors as stored by CGEQP3. If JOBU = 'F', these Householder
*> vectors together with CWORK(1:N) can be used to restore the Q factors from
*> the initial pivoted QR factorization of A. See the description of U.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER.
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is REAL array of dimension N.
*> The singular values of A, ordered so that S(i) >= S(i+1).
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*> U is COMPLEX array, dimension
*> LDU x M if JOBU = 'A'; see the description of LDU. In this case,
*> on exit, U contains the M left singular vectors.
*> LDU x N if JOBU = 'S', 'U', 'R' ; see the description of LDU. In this
*> case, U contains the leading N or the leading NUMRANK left singular vectors.
*> LDU x N if JOBU = 'F' ; see the description of LDU. In this case U
*> contains N x N unitary matrix that can be used to form the left
*> singular vectors.
*> If JOBU = 'N', U is not referenced.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER.
*> The leading dimension of the array U.
*> If JOBU = 'A', 'S', 'U', 'R', LDU >= max(1,M).
*> If JOBU = 'F', LDU >= max(1,N).
*> Otherwise, LDU >= 1.
*> \endverbatim
*>
*> \param[out] V
*> \verbatim
*> V is COMPLEX array, dimension
*> LDV x N if JOBV = 'A', 'V', 'R' or if JOBA = 'E' .
*> If JOBV = 'A', or 'V', V contains the N-by-N unitary matrix V**H;
*> If JOBV = 'R', V contains the first NUMRANK rows of V**H (the right
*> singular vectors, stored rowwise, of the NUMRANK largest singular values).
*> If JOBV = 'N' and JOBA = 'E', V is used as a workspace.
*> If JOBV = 'N', and JOBA.NE.'E', V is not referenced.
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*> LDV is INTEGER
*> The leading dimension of the array V.
*> If JOBV = 'A', 'V', 'R', or JOBA = 'E', LDV >= max(1,N).
*> Otherwise, LDV >= 1.
*> \endverbatim
*>
*> \param[out] NUMRANK
*> \verbatim
*> NUMRANK is INTEGER
*> NUMRANK is the numerical rank first determined after the rank
*> revealing QR factorization, following the strategy specified by the
*> value of JOBA. If JOBV = 'R' and JOBU = 'R', only NUMRANK
*> leading singular values and vectors are then requested in the call
*> of CGESVD. The final value of NUMRANK might be further reduced if
*> some singular values are computed as zeros.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (max(1, LIWORK)).
*> On exit, IWORK(1:N) contains column pivoting permutation of the
*> rank revealing QR factorization.
*> If JOBP = 'P', IWORK(N+1:N+M-1) contains the indices of the sequence
*> of row swaps used in row pivoting. These can be used to restore the
*> left singular vectors in the case JOBU = 'F'.
*>
*> If LIWORK, LCWORK, or LRWORK = -1, then on exit, if INFO = 0,
*> LIWORK(1) returns the minimal LIWORK.
*> \endverbatim
*>
*> \param[in] LIWORK
*> \verbatim
*> LIWORK is INTEGER
*> The dimension of the array IWORK.
*> LIWORK >= N + M - 1, if JOBP = 'P';
*> LIWORK >= N if JOBP = 'N'.
*>
*> If LIWORK = -1, then a workspace query is assumed; the routine
*> only calculates and returns the optimal and minimal sizes
*> for the CWORK, IWORK, and RWORK arrays, and no error
*> message related to LCWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] CWORK
*> \verbatim
*> CWORK is COMPLEX array, dimension (max(2, LCWORK)), used as a workspace.
*> On exit, if, on entry, LCWORK.NE.-1, CWORK(1:N) contains parameters
*> needed to recover the Q factor from the QR factorization computed by
*> CGEQP3.
*>
*> If LIWORK, LCWORK, or LRWORK = -1, then on exit, if INFO = 0,
*> CWORK(1) returns the optimal LCWORK, and
*> CWORK(2) returns the minimal LCWORK.
*> \endverbatim
*>
*> \param[in,out] LCWORK
*> \verbatim
*> LCWORK is INTEGER
*> The dimension of the array CWORK. It is determined as follows:
*> Let LWQP3 = N+1, LWCON = 2*N, and let
*> LWUNQ = { MAX( N, 1 ), if JOBU = 'R', 'S', or 'U'
*> { MAX( M, 1 ), if JOBU = 'A'
*> LWSVD = MAX( 3*N, 1 )
*> LWLQF = MAX( N/2, 1 ), LWSVD2 = MAX( 3*(N/2), 1 ), LWUNLQ = MAX( N, 1 ),
*> LWQRF = MAX( N/2, 1 ), LWUNQ2 = MAX( N, 1 )
*> Then the minimal value of LCWORK is:
*> = MAX( N + LWQP3, LWSVD ) if only the singular values are needed;
*> = MAX( N + LWQP3, LWCON, LWSVD ) if only the singular values are needed,
*> and a scaled condition estimate requested;
*>
*> = N + MAX( LWQP3, LWSVD, LWUNQ ) if the singular values and the left
*> singular vectors are requested;
*> = N + MAX( LWQP3, LWCON, LWSVD, LWUNQ ) if the singular values and the left
*> singular vectors are requested, and also
*> a scaled condition estimate requested;
*>
*> = N + MAX( LWQP3, LWSVD ) if the singular values and the right
*> singular vectors are requested;
*> = N + MAX( LWQP3, LWCON, LWSVD ) if the singular values and the right
*> singular vectors are requested, and also
*> a scaled condition etimate requested;
*>
*> = N + MAX( LWQP3, LWSVD, LWUNQ ) if the full SVD is requested with JOBV = 'R';
*> independent of JOBR;
*> = N + MAX( LWQP3, LWCON, LWSVD, LWUNQ ) if the full SVD is requested,
*> JOBV = 'R' and, also a scaled condition
*> estimate requested; independent of JOBR;
*> = MAX( N + MAX( LWQP3, LWSVD, LWUNQ ),
*> N + MAX( LWQP3, N/2+LWLQF, N/2+LWSVD2, N/2+LWUNLQ, LWUNQ) ) if the
*> full SVD is requested with JOBV = 'A' or 'V', and
*> JOBR ='N'
*> = MAX( N + MAX( LWQP3, LWCON, LWSVD, LWUNQ ),
*> N + MAX( LWQP3, LWCON, N/2+LWLQF, N/2+LWSVD2, N/2+LWUNLQ, LWUNQ ) )
*> if the full SVD is requested with JOBV = 'A' or 'V', and
*> JOBR ='N', and also a scaled condition number estimate
*> requested.
*> = MAX( N + MAX( LWQP3, LWSVD, LWUNQ ),
*> N + MAX( LWQP3, N/2+LWQRF, N/2+LWSVD2, N/2+LWUNQ2, LWUNQ ) ) if the
*> full SVD is requested with JOBV = 'A', 'V', and JOBR ='T'
*> = MAX( N + MAX( LWQP3, LWCON, LWSVD, LWUNQ ),
*> N + MAX( LWQP3, LWCON, N/2+LWQRF, N/2+LWSVD2, N/2+LWUNQ2, LWUNQ ) )
*> if the full SVD is requested with JOBV = 'A', 'V' and
*> JOBR ='T', and also a scaled condition number estimate
*> requested.
*> Finally, LCWORK must be at least two: LCWORK = MAX( 2, LCWORK ).
*>
*> If LCWORK = -1, then a workspace query is assumed; the routine
*> only calculates and returns the optimal and minimal sizes
*> for the CWORK, IWORK, and RWORK arrays, and no error
*> message related to LCWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (max(1, LRWORK)).
*> On exit,
*> 1. If JOBA = 'E', RWORK(1) contains an estimate of the condition
*> number of column scaled A. If A = C * D where D is diagonal and C
*> has unit columns in the Euclidean norm, then, assuming full column rank,
*> N^(-1/4) * RWORK(1) <= ||pinv(C)||_2 <= N^(1/4) * RWORK(1).
*> Otherwise, RWORK(1) = -1.
*> 2. RWORK(2) contains the number of singular values computed as
*> exact zeros in CGESVD applied to the upper triangular or trapeziodal
*> R (from the initial QR factorization). In case of early exit (no call to
*> CGESVD, such as in the case of zero matrix) RWORK(2) = -1.
*>
*> If LIWORK, LCWORK, or LRWORK = -1, then on exit, if INFO = 0,
*> RWORK(1) returns the minimal LRWORK.
*> \endverbatim
*>
*> \param[in] LRWORK
*> \verbatim
*> LRWORK is INTEGER.
*> The dimension of the array RWORK.
*> If JOBP ='P', then LRWORK >= MAX(2, M, 5*N);
*> Otherwise, LRWORK >= MAX(2, 5*N).
*>
*> If LRWORK = -1, then a workspace query is assumed; the routine
*> only calculates and returns the optimal and minimal sizes
*> for the CWORK, IWORK, and RWORK arrays, and no error
*> message related to LCWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: if CBDSQR did not converge, INFO specifies how many superdiagonals
*> of an intermediate bidiagonal form B (computed in CGESVD) did not
*> converge to zero.
*> \endverbatim
*
*> \par Further Details:
* ========================
*>
*> \verbatim
*>
*> 1. The data movement (matrix transpose) is coded using simple nested
*> DO-loops because BLAS and LAPACK do not provide corresponding subroutines.
*> Those DO-loops are easily identified in this source code - by the CONTINUE
*> statements labeled with 11**. In an optimized version of this code, the
*> nested DO loops should be replaced with calls to an optimized subroutine.
*> 2. This code scales A by 1/SQRT(M) if the largest ABS(A(i,j)) could cause
*> column norm overflow. This is the minial precaution and it is left to the
*> SVD routine (CGESVD) to do its own preemptive scaling if potential over-
*> or underflows are detected. To avoid repeated scanning of the array A,
*> an optimal implementation would do all necessary scaling before calling
*> CGESVD and the scaling in CGESVD can be switched off.
*> 3. Other comments related to code optimization are given in comments in the
*> code, enlosed in [[double brackets]].
*> \endverbatim
*
*> \par Bugs, examples and comments
* ===========================
*
*> \verbatim
*> Please report all bugs and send interesting examples and/or comments to
*> drmac@math.hr. Thank you.
*> \endverbatim
*
*> \par References
* ===============
*
*> \verbatim
*> [1] Zlatko Drmac, Algorithm 977: A QR-Preconditioned QR SVD Method for
*> Computing the SVD with High Accuracy. ACM Trans. Math. Softw.
*> 44(1): 11:1-11:30 (2017)
*>
*> SIGMA library, xGESVDQ section updated February 2016.
*> Developed and coded by Zlatko Drmac, Department of Mathematics
*> University of Zagreb, Croatia, drmac@math.hr
*> \endverbatim
*
*
*> \par Contributors:
* ==================
*>
*> \verbatim
*> Developed and coded by Zlatko Drmac, Department of Mathematics
*> University of Zagreb, Croatia, drmac@math.hr
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2018
*
*> \ingroup complexGEsing
*
* =====================================================================
SUBROUTINE CGESVDQ( JOBA, JOBP, JOBR, JOBU, JOBV, M, N, A, LDA,
$ S, U, LDU, V, LDV, NUMRANK, IWORK, LIWORK,
$ CWORK, LCWORK, RWORK, LRWORK, INFO )
* .. Scalar Arguments ..
IMPLICIT NONE
CHARACTER JOBA, JOBP, JOBR, JOBU, JOBV
INTEGER M, N, LDA, LDU, LDV, NUMRANK, LIWORK, LCWORK, LRWORK,
$ INFO
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), U( LDU, * ), V( LDV, * ), CWORK( * )
REAL S( * ), RWORK( * )
INTEGER IWORK( * )
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ), CONE = ( 1.0E0, 0.0E0 ) )
* ..
* .. Local Scalars ..
INTEGER IERR, NR, N1, OPTRATIO, p, q
INTEGER LWCON, LWQP3, LWRK_CGELQF, LWRK_CGESVD, LWRK_CGESVD2,
$ LWRK_CGEQP3, LWRK_CGEQRF, LWRK_CUNMLQ, LWRK_CUNMQR,
$ LWRK_CUNMQR2, LWLQF, LWQRF, LWSVD, LWSVD2, LWUNQ,
$ LWUNQ2, LWUNLQ, MINWRK, MINWRK2, OPTWRK, OPTWRK2,
$ IMINWRK, RMINWRK
LOGICAL ACCLA, ACCLM, ACCLH, ASCALED, CONDA, DNTWU, DNTWV,
$ LQUERY, LSVC0, LSVEC, ROWPRM, RSVEC, RTRANS, WNTUA,
$ WNTUF, WNTUR, WNTUS, WNTVA, WNTVR
REAL BIG, EPSLN, RTMP, SCONDA, SFMIN
COMPLEX CTMP
* ..
* .. Local Arrays
COMPLEX CDUMMY(1)
REAL RDUMMY(1)
* ..
* .. External Subroutines (BLAS, LAPACK)
EXTERNAL CGELQF, CGEQP3, CGEQRF, CGESVD, CLACPY, CLAPMT,
$ CLASCL, CLASET, CLASWP, CSSCAL, SLASET, SLASCL,
$ CPOCON, CUNMLQ, CUNMQR, XERBLA
* ..
* .. External Functions (BLAS, LAPACK)
LOGICAL LSAME
INTEGER ISAMAX
REAL CLANGE, SCNRM2, SLAMCH
EXTERNAL CLANGE, LSAME, ISAMAX, SCNRM2, SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CONJG, MAX, MIN, REAL, SQRT
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
WNTUS = LSAME( JOBU, 'S' ) .OR. LSAME( JOBU, 'U' )
WNTUR = LSAME( JOBU, 'R' )
WNTUA = LSAME( JOBU, 'A' )
WNTUF = LSAME( JOBU, 'F' )
LSVC0 = WNTUS .OR. WNTUR .OR. WNTUA
LSVEC = LSVC0 .OR. WNTUF
DNTWU = LSAME( JOBU, 'N' )
*
WNTVR = LSAME( JOBV, 'R' )
WNTVA = LSAME( JOBV, 'A' ) .OR. LSAME( JOBV, 'V' )
RSVEC = WNTVR .OR. WNTVA
DNTWV = LSAME( JOBV, 'N' )
*
ACCLA = LSAME( JOBA, 'A' )
ACCLM = LSAME( JOBA, 'M' )
CONDA = LSAME( JOBA, 'E' )
ACCLH = LSAME( JOBA, 'H' ) .OR. CONDA
*
ROWPRM = LSAME( JOBP, 'P' )
RTRANS = LSAME( JOBR, 'T' )
*
IF ( ROWPRM ) THEN
IMINWRK = MAX( 1, N + M - 1 )
RMINWRK = MAX( 2, M, 5*N )
ELSE
IMINWRK = MAX( 1, N )
RMINWRK = MAX( 2, 5*N )
END IF
LQUERY = (LIWORK .EQ. -1 .OR. LCWORK .EQ. -1 .OR. LRWORK .EQ. -1)
INFO = 0
IF ( .NOT. ( ACCLA .OR. ACCLM .OR. ACCLH ) ) THEN
INFO = -1
ELSE IF ( .NOT.( ROWPRM .OR. LSAME( JOBP, 'N' ) ) ) THEN
INFO = -2
ELSE IF ( .NOT.( RTRANS .OR. LSAME( JOBR, 'N' ) ) ) THEN
INFO = -3
ELSE IF ( .NOT.( LSVEC .OR. DNTWU ) ) THEN
INFO = -4
ELSE IF ( WNTUR .AND. WNTVA ) THEN
INFO = -5
ELSE IF ( .NOT.( RSVEC .OR. DNTWV )) THEN
INFO = -5
ELSE IF ( M.LT.0 ) THEN
INFO = -6
ELSE IF ( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
INFO = -7
ELSE IF ( LDA.LT.MAX( 1, M ) ) THEN
INFO = -9
ELSE IF ( LDU.LT.1 .OR. ( LSVC0 .AND. LDU.LT.M ) .OR.
$ ( WNTUF .AND. LDU.LT.N ) ) THEN
INFO = -12
ELSE IF ( LDV.LT.1 .OR. ( RSVEC .AND. LDV.LT.N ) .OR.
$ ( CONDA .AND. LDV.LT.N ) ) THEN
INFO = -14
ELSE IF ( LIWORK .LT. IMINWRK .AND. .NOT. LQUERY ) THEN
INFO = -17
END IF
*
*
IF ( INFO .EQ. 0 ) THEN
*
* Compute workspace
* .. compute the minimal and the optimal workspace lengths
* [[The expressions for computing the minimal and the optimal
* values of LCWORK are written with a lot of redundancy and
* can be simplified. However, this detailed form is easier for
* maintenance and modifications of the code.]]
*
* .. minimal workspace length for CGEQP3 of an M x N matrix
LWQP3 = N+1
* .. minimal workspace length for CUNMQR to build left singular vectors
IF ( WNTUS .OR. WNTUR ) THEN
LWUNQ = MAX( N , 1 )
ELSE IF ( WNTUA ) THEN
LWUNQ = MAX( M , 1 )
END IF
* .. minimal workspace length for CPOCON of an N x N matrix
LWCON = 2 * N
* .. CGESVD of an N x N matrix
LWSVD = MAX( 3 * N, 1 )
IF ( LQUERY ) THEN
CALL CGEQP3( M, N, A, LDA, IWORK, CDUMMY, CDUMMY, -1,
$ RDUMMY, IERR )
LWRK_CGEQP3 = INT( CDUMMY(1) )
IF ( WNTUS .OR. WNTUR ) THEN
CALL CUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
$ LDU, CDUMMY, -1, IERR )
LWRK_CUNMQR = INT( CDUMMY(1) )
ELSE IF ( WNTUA ) THEN
CALL CUNMQR( 'L', 'N', M, M, N, A, LDA, CDUMMY, U,
$ LDU, CDUMMY, -1, IERR )
LWRK_CUNMQR = INT( CDUMMY(1) )
ELSE
LWRK_CUNMQR = 0
END IF
END IF
MINWRK = 2
OPTWRK = 2
IF ( .NOT. (LSVEC .OR. RSVEC )) THEN
* .. minimal and optimal sizes of the complex workspace if
* only the singular values are requested
IF ( CONDA ) THEN
MINWRK = MAX( N+LWQP3, LWCON, LWSVD )
ELSE
MINWRK = MAX( N+LWQP3, LWSVD )
END IF
IF ( LQUERY ) THEN
CALL CGESVD( 'N', 'N', N, N, A, LDA, S, U, LDU,
$ V, LDV, CDUMMY, -1, RDUMMY, IERR )
LWRK_CGESVD = INT( CDUMMY(1) )
IF ( CONDA ) THEN
OPTWRK = MAX( N+LWRK_CGEQP3, N+LWCON, LWRK_CGESVD )
ELSE
OPTWRK = MAX( N+LWRK_CGEQP3, LWRK_CGESVD )
END IF
END IF
ELSE IF ( LSVEC .AND. (.NOT.RSVEC) ) THEN
* .. minimal and optimal sizes of the complex workspace if the
* singular values and the left singular vectors are requested
IF ( CONDA ) THEN
MINWRK = N + MAX( LWQP3, LWCON, LWSVD, LWUNQ )
ELSE
MINWRK = N + MAX( LWQP3, LWSVD, LWUNQ )
END IF
IF ( LQUERY ) THEN
IF ( RTRANS ) THEN
CALL CGESVD( 'N', 'O', N, N, A, LDA, S, U, LDU,
$ V, LDV, CDUMMY, -1, RDUMMY, IERR )
ELSE
CALL CGESVD( 'O', 'N', N, N, A, LDA, S, U, LDU,
$ V, LDV, CDUMMY, -1, RDUMMY, IERR )
END IF
LWRK_CGESVD = INT( CDUMMY(1) )
IF ( CONDA ) THEN
OPTWRK = N + MAX( LWRK_CGEQP3, LWCON, LWRK_CGESVD,
$ LWRK_CUNMQR )
ELSE
OPTWRK = N + MAX( LWRK_CGEQP3, LWRK_CGESVD,
$ LWRK_CUNMQR )
END IF
END IF
ELSE IF ( RSVEC .AND. (.NOT.LSVEC) ) THEN
* .. minimal and optimal sizes of the complex workspace if the
* singular values and the right singular vectors are requested
IF ( CONDA ) THEN
MINWRK = N + MAX( LWQP3, LWCON, LWSVD )
ELSE
MINWRK = N + MAX( LWQP3, LWSVD )
END IF
IF ( LQUERY ) THEN
IF ( RTRANS ) THEN
CALL CGESVD( 'O', 'N', N, N, A, LDA, S, U, LDU,
$ V, LDV, CDUMMY, -1, RDUMMY, IERR )
ELSE
CALL CGESVD( 'N', 'O', N, N, A, LDA, S, U, LDU,
$ V, LDV, CDUMMY, -1, RDUMMY, IERR )
END IF
LWRK_CGESVD = INT( CDUMMY(1) )
IF ( CONDA ) THEN
OPTWRK = N + MAX( LWRK_CGEQP3, LWCON, LWRK_CGESVD )
ELSE
OPTWRK = N + MAX( LWRK_CGEQP3, LWRK_CGESVD )
END IF
END IF
ELSE
* .. minimal and optimal sizes of the complex workspace if the
* full SVD is requested
IF ( RTRANS ) THEN
MINWRK = MAX( LWQP3, LWSVD, LWUNQ )
IF ( CONDA ) MINWRK = MAX( MINWRK, LWCON )
MINWRK = MINWRK + N
IF ( WNTVA ) THEN
* .. minimal workspace length for N x N/2 CGEQRF
LWQRF = MAX( N/2, 1 )
* .. minimal workspace lengt for N/2 x N/2 CGESVD
LWSVD2 = MAX( 3 * (N/2), 1 )
LWUNQ2 = MAX( N, 1 )
MINWRK2 = MAX( LWQP3, N/2+LWQRF, N/2+LWSVD2,
$ N/2+LWUNQ2, LWUNQ )
IF ( CONDA ) MINWRK2 = MAX( MINWRK2, LWCON )
MINWRK2 = N + MINWRK2
MINWRK = MAX( MINWRK, MINWRK2 )
END IF
ELSE
MINWRK = MAX( LWQP3, LWSVD, LWUNQ )
IF ( CONDA ) MINWRK = MAX( MINWRK, LWCON )
MINWRK = MINWRK + N
IF ( WNTVA ) THEN
* .. minimal workspace length for N/2 x N CGELQF
LWLQF = MAX( N/2, 1 )
LWSVD2 = MAX( 3 * (N/2), 1 )
LWUNLQ = MAX( N , 1 )
MINWRK2 = MAX( LWQP3, N/2+LWLQF, N/2+LWSVD2,
$ N/2+LWUNLQ, LWUNQ )
IF ( CONDA ) MINWRK2 = MAX( MINWRK2, LWCON )
MINWRK2 = N + MINWRK2
MINWRK = MAX( MINWRK, MINWRK2 )
END IF
END IF
IF ( LQUERY ) THEN
IF ( RTRANS ) THEN
CALL CGESVD( 'O', 'A', N, N, A, LDA, S, U, LDU,
$ V, LDV, CDUMMY, -1, RDUMMY, IERR )
LWRK_CGESVD = INT( CDUMMY(1) )
OPTWRK = MAX(LWRK_CGEQP3,LWRK_CGESVD,LWRK_CUNMQR)
IF ( CONDA ) OPTWRK = MAX( OPTWRK, LWCON )
OPTWRK = N + OPTWRK
IF ( WNTVA ) THEN
CALL CGEQRF(N,N/2,U,LDU,CDUMMY,CDUMMY,-1,IERR)
LWRK_CGEQRF = INT( CDUMMY(1) )
CALL CGESVD( 'S', 'O', N/2,N/2, V,LDV, S, U,LDU,
$ V, LDV, CDUMMY, -1, RDUMMY, IERR )
LWRK_CGESVD2 = INT( CDUMMY(1) )
CALL CUNMQR( 'R', 'C', N, N, N/2, U, LDU, CDUMMY,
$ V, LDV, CDUMMY, -1, IERR )
LWRK_CUNMQR2 = INT( CDUMMY(1) )
OPTWRK2 = MAX( LWRK_CGEQP3, N/2+LWRK_CGEQRF,
$ N/2+LWRK_CGESVD2, N/2+LWRK_CUNMQR2 )
IF ( CONDA ) OPTWRK2 = MAX( OPTWRK2, LWCON )
OPTWRK2 = N + OPTWRK2
OPTWRK = MAX( OPTWRK, OPTWRK2 )
END IF
ELSE
CALL CGESVD( 'S', 'O', N, N, A, LDA, S, U, LDU,
$ V, LDV, CDUMMY, -1, RDUMMY, IERR )
LWRK_CGESVD = INT( CDUMMY(1) )
OPTWRK = MAX(LWRK_CGEQP3,LWRK_CGESVD,LWRK_CUNMQR)
IF ( CONDA ) OPTWRK = MAX( OPTWRK, LWCON )
OPTWRK = N + OPTWRK
IF ( WNTVA ) THEN
CALL CGELQF(N/2,N,U,LDU,CDUMMY,CDUMMY,-1,IERR)
LWRK_CGELQF = INT( CDUMMY(1) )
CALL CGESVD( 'S','O', N/2,N/2, V, LDV, S, U, LDU,
$ V, LDV, CDUMMY, -1, RDUMMY, IERR )
LWRK_CGESVD2 = INT( CDUMMY(1) )
CALL CUNMLQ( 'R', 'N', N, N, N/2, U, LDU, CDUMMY,
$ V, LDV, CDUMMY,-1,IERR )
LWRK_CUNMLQ = INT( CDUMMY(1) )
OPTWRK2 = MAX( LWRK_CGEQP3, N/2+LWRK_CGELQF,
$ N/2+LWRK_CGESVD2, N/2+LWRK_CUNMLQ )
IF ( CONDA ) OPTWRK2 = MAX( OPTWRK2, LWCON )
OPTWRK2 = N + OPTWRK2
OPTWRK = MAX( OPTWRK, OPTWRK2 )
END IF
END IF
END IF
END IF
*
MINWRK = MAX( 2, MINWRK )
OPTWRK = MAX( 2, OPTWRK )
IF ( LCWORK .LT. MINWRK .AND. (.NOT.LQUERY) ) INFO = -19
*
END IF
*
IF (INFO .EQ. 0 .AND. LRWORK .LT. RMINWRK .AND. .NOT. LQUERY) THEN
INFO = -21
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CGESVDQ', -INFO )
RETURN
ELSE IF ( LQUERY ) THEN
*
* Return optimal workspace
*
IWORK(1) = IMINWRK
CWORK(1) = OPTWRK
CWORK(2) = MINWRK
RWORK(1) = RMINWRK
RETURN
END IF
*
* Quick return if the matrix is void.
*
IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) ) THEN
* .. all output is void.
RETURN
END IF
*
BIG = SLAMCH('O')
ASCALED = .FALSE.
IF ( ROWPRM ) THEN
* .. reordering the rows in decreasing sequence in the
* ell-infinity norm - this enhances numerical robustness in
* the case of differently scaled rows.
DO 1904 p = 1, M
* RWORK(p) = ABS( A(p,ICAMAX(N,A(p,1),LDA)) )
* [[CLANGE will return NaN if an entry of the p-th row is Nan]]
RWORK(p) = CLANGE( 'M', 1, N, A(p,1), LDA, RDUMMY )
* .. check for NaN's and Inf's
IF ( ( RWORK(p) .NE. RWORK(p) ) .OR.
$ ( (RWORK(p)*ZERO) .NE. ZERO ) ) THEN
INFO = - 8
CALL XERBLA( 'CGESVDQ', -INFO )
RETURN
END IF
1904 CONTINUE
DO 1952 p = 1, M - 1
q = ISAMAX( M-p+1, RWORK(p), 1 ) + p - 1
IWORK(N+p) = q
IF ( p .NE. q ) THEN
RTMP = RWORK(p)
RWORK(p) = RWORK(q)
RWORK(q) = RTMP
END IF
1952 CONTINUE
*
IF ( RWORK(1) .EQ. ZERO ) THEN
* Quick return: A is the M x N zero matrix.
NUMRANK = 0
CALL SLASET( 'G', N, 1, ZERO, ZERO, S, N )
IF ( WNTUS ) CALL CLASET('G', M, N, CZERO, CONE, U, LDU)
IF ( WNTUA ) CALL CLASET('G', M, M, CZERO, CONE, U, LDU)
IF ( WNTVA ) CALL CLASET('G', N, N, CZERO, CONE, V, LDV)
IF ( WNTUF ) THEN
CALL CLASET( 'G', N, 1, CZERO, CZERO, CWORK, N )
CALL CLASET( 'G', M, N, CZERO, CONE, U, LDU )
END IF
DO 5001 p = 1, N
IWORK(p) = p
5001 CONTINUE
IF ( ROWPRM ) THEN
DO 5002 p = N + 1, N + M - 1
IWORK(p) = p - N
5002 CONTINUE
END IF
IF ( CONDA ) RWORK(1) = -1
RWORK(2) = -1
RETURN
END IF
*
IF ( RWORK(1) .GT. BIG / SQRT(REAL(M)) ) THEN
* .. to prevent overflow in the QR factorization, scale the
* matrix by 1/sqrt(M) if too large entry detected
CALL CLASCL('G',0,0,SQRT(REAL(M)),ONE, M,N, A,LDA, IERR)
ASCALED = .TRUE.
END IF
CALL CLASWP( N, A, LDA, 1, M-1, IWORK(N+1), 1 )
END IF
*
* .. At this stage, preemptive scaling is done only to avoid column
* norms overflows during the QR factorization. The SVD procedure should
* have its own scaling to save the singular values from overflows and
* underflows. That depends on the SVD procedure.
*
IF ( .NOT.ROWPRM ) THEN
RTMP = CLANGE( 'M', M, N, A, LDA, RWORK )
IF ( ( RTMP .NE. RTMP ) .OR.
$ ( (RTMP*ZERO) .NE. ZERO ) ) THEN
INFO = - 8
CALL XERBLA( 'CGESVDQ', -INFO )
RETURN
END IF
IF ( RTMP .GT. BIG / SQRT(REAL(M)) ) THEN
* .. to prevent overflow in the QR factorization, scale the
* matrix by 1/sqrt(M) if too large entry detected
CALL CLASCL('G',0,0, SQRT(REAL(M)),ONE, M,N, A,LDA, IERR)
ASCALED = .TRUE.
END IF
END IF
*
* .. QR factorization with column pivoting
*
* A * P = Q * [ R ]
* [ 0 ]
*
DO 1963 p = 1, N
* .. all columns are free columns
IWORK(p) = 0
1963 CONTINUE
CALL CGEQP3( M, N, A, LDA, IWORK, CWORK, CWORK(N+1), LCWORK-N,
$ RWORK, IERR )
*
* If the user requested accuracy level allows truncation in the
* computed upper triangular factor, the matrix R is examined and,
* if possible, replaced with its leading upper trapezoidal part.
*
EPSLN = SLAMCH('E')
SFMIN = SLAMCH('S')
* SMALL = SFMIN / EPSLN
NR = N
*
IF ( ACCLA ) THEN
*
* Standard absolute error bound suffices. All sigma_i with
* sigma_i < N*EPS*||A||_F are flushed to zero. This is an
* aggressive enforcement of lower numerical rank by introducing a
* backward error of the order of N*EPS*||A||_F.
NR = 1
RTMP = SQRT(REAL(N))*EPSLN
DO 3001 p = 2, N
IF ( ABS(A(p,p)) .LT. (RTMP*ABS(A(1,1))) ) GO TO 3002
NR = NR + 1
3001 CONTINUE
3002 CONTINUE
*
ELSEIF ( ACCLM ) THEN
* .. similarly as above, only slightly more gentle (less aggressive).
* Sudden drop on the diagonal of R is used as the criterion for being
* close-to-rank-deficient. The threshold is set to EPSLN=SLAMCH('E').
* [[This can be made more flexible by replacing this hard-coded value
* with a user specified threshold.]] Also, the values that underflow
* will be truncated.
NR = 1
DO 3401 p = 2, N
IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR.
$ ( ABS(A(p,p)) .LT. SFMIN ) ) GO TO 3402
NR = NR + 1
3401 CONTINUE
3402 CONTINUE
*
ELSE
* .. RRQR not authorized to determine numerical rank except in the
* obvious case of zero pivots.
* .. inspect R for exact zeros on the diagonal;
* R(i,i)=0 => R(i:N,i:N)=0.
NR = 1
DO 3501 p = 2, N
IF ( ABS(A(p,p)) .EQ. ZERO ) GO TO 3502
NR = NR + 1
3501 CONTINUE
3502 CONTINUE
*
IF ( CONDA ) THEN
* Estimate the scaled condition number of A. Use the fact that it is
* the same as the scaled condition number of R.
* .. V is used as workspace
CALL CLACPY( 'U', N, N, A, LDA, V, LDV )
* Only the leading NR x NR submatrix of the triangular factor
* is considered. Only if NR=N will this give a reliable error
* bound. However, even for NR < N, this can be used on an
* expert level and obtain useful information in the sense of
* perturbation theory.
DO 3053 p = 1, NR
RTMP = SCNRM2( p, V(1,p), 1 )
CALL CSSCAL( p, ONE/RTMP, V(1,p), 1 )
3053 CONTINUE
IF ( .NOT. ( LSVEC .OR. RSVEC ) ) THEN
CALL CPOCON( 'U', NR, V, LDV, ONE, RTMP,
$ CWORK, RWORK, IERR )
ELSE
CALL CPOCON( 'U', NR, V, LDV, ONE, RTMP,
$ CWORK(N+1), RWORK, IERR )
END IF
SCONDA = ONE / SQRT(RTMP)
* For NR=N, SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1),
* N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
* See the reference [1] for more details.
END IF
*
ENDIF
*
IF ( WNTUR ) THEN
N1 = NR
ELSE IF ( WNTUS .OR. WNTUF) THEN
N1 = N
ELSE IF ( WNTUA ) THEN
N1 = M
END IF
*
IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
*.......................................................................
* .. only the singular values are requested
*.......................................................................
IF ( RTRANS ) THEN
*
* .. compute the singular values of R**H = [A](1:NR,1:N)**H
* .. set the lower triangle of [A] to [A](1:NR,1:N)**H and
* the upper triangle of [A] to zero.
DO 1146 p = 1, MIN( N, NR )
A(p,p) = CONJG(A(p,p))
DO 1147 q = p + 1, N
A(q,p) = CONJG(A(p,q))
IF ( q .LE. NR ) A(p,q) = CZERO
1147 CONTINUE
1146 CONTINUE
*
CALL CGESVD( 'N', 'N', N, NR, A, LDA, S, U, LDU,
$ V, LDV, CWORK, LCWORK, RWORK, INFO )
*
ELSE
*
* .. compute the singular values of R = [A](1:NR,1:N)
*
IF ( NR .GT. 1 )
$ CALL CLASET( 'L', NR-1,NR-1, CZERO,CZERO, A(2,1), LDA )
CALL CGESVD( 'N', 'N', NR, N, A, LDA, S, U, LDU,
$ V, LDV, CWORK, LCWORK, RWORK, INFO )
*
END IF
*
ELSE IF ( LSVEC .AND. ( .NOT. RSVEC) ) THEN
*.......................................................................
* .. the singular values and the left singular vectors requested
*.......................................................................""""""""
IF ( RTRANS ) THEN
* .. apply CGESVD to R**H
* .. copy R**H into [U] and overwrite [U] with the right singular
* vectors of R
DO 1192 p = 1, NR
DO 1193 q = p, N
U(q,p) = CONJG(A(p,q))
1193 CONTINUE
1192 CONTINUE
IF ( NR .GT. 1 )
$ CALL CLASET( 'U', NR-1,NR-1, CZERO,CZERO, U(1,2), LDU )
* .. the left singular vectors not computed, the NR right singular
* vectors overwrite [U](1:NR,1:NR) as conjugate transposed. These
* will be pre-multiplied by Q to build the left singular vectors of A.
CALL CGESVD( 'N', 'O', N, NR, U, LDU, S, U, LDU,
$ U, LDU, CWORK(N+1), LCWORK-N, RWORK, INFO )
*
DO 1119 p = 1, NR
U(p,p) = CONJG(U(p,p))
DO 1120 q = p + 1, NR
CTMP = CONJG(U(q,p))
U(q,p) = CONJG(U(p,q))
U(p,q) = CTMP
1120 CONTINUE
1119 CONTINUE
*
ELSE
* .. apply CGESVD to R
* .. copy R into [U] and overwrite [U] with the left singular vectors
CALL CLACPY( 'U', NR, N, A, LDA, U, LDU )
IF ( NR .GT. 1 )
$ CALL CLASET( 'L', NR-1, NR-1, CZERO, CZERO, U(2,1), LDU )
* .. the right singular vectors not computed, the NR left singular
* vectors overwrite [U](1:NR,1:NR)
CALL CGESVD( 'O', 'N', NR, N, U, LDU, S, U, LDU,
$ V, LDV, CWORK(N+1), LCWORK-N, RWORK, INFO )
* .. now [U](1:NR,1:NR) contains the NR left singular vectors of
* R. These will be pre-multiplied by Q to build the left singular
* vectors of A.
END IF
*
* .. assemble the left singular vector matrix U of dimensions
* (M x NR) or (M x N) or (M x M).
IF ( ( NR .LT. M ) .AND. ( .NOT.WNTUF ) ) THEN
CALL CLASET('A', M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU)
IF ( NR .LT. N1 ) THEN
CALL CLASET( 'A',NR,N1-NR,CZERO,CZERO,U(1,NR+1), LDU )
CALL CLASET( 'A',M-NR,N1-NR,CZERO,CONE,
$ U(NR+1,NR+1), LDU )
END IF
END IF
*
* The Q matrix from the first QRF is built into the left singular
* vectors matrix U.
*
IF ( .NOT.WNTUF )
$ CALL CUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
$ LDU, CWORK(N+1), LCWORK-N, IERR )
IF ( ROWPRM .AND. .NOT.WNTUF )
$ CALL CLASWP( N1, U, LDU, 1, M-1, IWORK(N+1), -1 )
*
ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN
*.......................................................................
* .. the singular values and the right singular vectors requested
*.......................................................................
IF ( RTRANS ) THEN
* .. apply CGESVD to R**H
* .. copy R**H into V and overwrite V with the left singular vectors
DO 1165 p = 1, NR
DO 1166 q = p, N
V(q,p) = CONJG(A(p,q))
1166 CONTINUE
1165 CONTINUE
IF ( NR .GT. 1 )
$ CALL CLASET( 'U', NR-1,NR-1, CZERO,CZERO, V(1,2), LDV )
* .. the left singular vectors of R**H overwrite V, the right singular
* vectors not computed
IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN
CALL CGESVD( 'O', 'N', N, NR, V, LDV, S, U, LDU,
$ U, LDU, CWORK(N+1), LCWORK-N, RWORK, INFO )
*
DO 1121 p = 1, NR
V(p,p) = CONJG(V(p,p))
DO 1122 q = p + 1, NR
CTMP = CONJG(V(q,p))
V(q,p) = CONJG(V(p,q))
V(p,q) = CTMP
1122 CONTINUE
1121 CONTINUE
*
IF ( NR .LT. N ) THEN
DO 1103 p = 1, NR
DO 1104 q = NR + 1, N
V(p,q) = CONJG(V(q,p))
1104 CONTINUE
1103 CONTINUE
END IF
CALL CLAPMT( .FALSE., NR, N, V, LDV, IWORK )
ELSE
* .. need all N right singular vectors and NR < N
* [!] This is simple implementation that augments [V](1:N,1:NR)
* by padding a zero block. In the case NR << N, a more efficient
* way is to first use the QR factorization. For more details
* how to implement this, see the " FULL SVD " branch.
CALL CLASET('G', N, N-NR, CZERO, CZERO, V(1,NR+1), LDV)
CALL CGESVD( 'O', 'N', N, N, V, LDV, S, U, LDU,
$ U, LDU, CWORK(N+1), LCWORK-N, RWORK, INFO )
*
DO 1123 p = 1, N
V(p,p) = CONJG(V(p,p))
DO 1124 q = p + 1, N
CTMP = CONJG(V(q,p))
V(q,p) = CONJG(V(p,q))
V(p,q) = CTMP
1124 CONTINUE
1123 CONTINUE
CALL CLAPMT( .FALSE., N, N, V, LDV, IWORK )
END IF
*
ELSE
* .. aply CGESVD to R
* .. copy R into V and overwrite V with the right singular vectors
CALL CLACPY( 'U', NR, N, A, LDA, V, LDV )
IF ( NR .GT. 1 )
$ CALL CLASET( 'L', NR-1, NR-1, CZERO, CZERO, V(2,1), LDV )
* .. the right singular vectors overwrite V, the NR left singular
* vectors stored in U(1:NR,1:NR)
IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN
CALL CGESVD( 'N', 'O', NR, N, V, LDV, S, U, LDU,
$ V, LDV, CWORK(N+1), LCWORK-N, RWORK, INFO )
CALL CLAPMT( .FALSE., NR, N, V, LDV, IWORK )
* .. now [V](1:NR,1:N) contains V(1:N,1:NR)**H
ELSE
* .. need all N right singular vectors and NR < N
* [!] This is simple implementation that augments [V](1:NR,1:N)
* by padding a zero block. In the case NR << N, a more efficient
* way is to first use the LQ factorization. For more details
* how to implement this, see the " FULL SVD " branch.
CALL CLASET('G', N-NR, N, CZERO,CZERO, V(NR+1,1), LDV)
CALL CGESVD( 'N', 'O', N, N, V, LDV, S, U, LDU,
$ V, LDV, CWORK(N+1), LCWORK-N, RWORK, INFO )
CALL CLAPMT( .FALSE., N, N, V, LDV, IWORK )
END IF
* .. now [V] contains the adjoint of the matrix of the right singular
* vectors of A.
END IF
*
ELSE
*.......................................................................
* .. FULL SVD requested
*.......................................................................
IF ( RTRANS ) THEN
*
* .. apply CGESVD to R**H [[this option is left for R&D&T]]
*
IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN
* .. copy R**H into [V] and overwrite [V] with the left singular
* vectors of R**H
DO 1168 p = 1, NR
DO 1169 q = p, N
V(q,p) = CONJG(A(p,q))
1169 CONTINUE
1168 CONTINUE
IF ( NR .GT. 1 )
$ CALL CLASET( 'U', NR-1,NR-1, CZERO,CZERO, V(1,2), LDV )
*
* .. the left singular vectors of R**H overwrite [V], the NR right
* singular vectors of R**H stored in [U](1:NR,1:NR) as conjugate
* transposed
CALL CGESVD( 'O', 'A', N, NR, V, LDV, S, V, LDV,
$ U, LDU, CWORK(N+1), LCWORK-N, RWORK, INFO )
* .. assemble V
DO 1115 p = 1, NR
V(p,p) = CONJG(V(p,p))
DO 1116 q = p + 1, NR
CTMP = CONJG(V(q,p))
V(q,p) = CONJG(V(p,q))
V(p,q) = CTMP
1116 CONTINUE
1115 CONTINUE
IF ( NR .LT. N ) THEN
DO 1101 p = 1, NR
DO 1102 q = NR+1, N
V(p,q) = CONJG(V(q,p))
1102 CONTINUE
1101 CONTINUE
END IF
CALL CLAPMT( .FALSE., NR, N, V, LDV, IWORK )
*
DO 1117 p = 1, NR
U(p,p) = CONJG(U(p,p))
DO 1118 q = p + 1, NR
CTMP = CONJG(U(q,p))
U(q,p) = CONJG(U(p,q))
U(p,q) = CTMP
1118 CONTINUE
1117 CONTINUE
*
IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN
CALL CLASET('A', M-NR,NR, CZERO,CZERO, U(NR+1,1), LDU)
IF ( NR .LT. N1 ) THEN
CALL CLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU)
CALL CLASET( 'A',M-NR,N1-NR,CZERO,CONE,
$ U(NR+1,NR+1), LDU )
END IF
END IF
*
ELSE
* .. need all N right singular vectors and NR < N
* .. copy R**H into [V] and overwrite [V] with the left singular
* vectors of R**H
* [[The optimal ratio N/NR for using QRF instead of padding
* with zeros. Here hard coded to 2; it must be at least
* two due to work space constraints.]]
* OPTRATIO = ILAENV(6, 'CGESVD', 'S' // 'O', NR,N,0,0)
* OPTRATIO = MAX( OPTRATIO, 2 )
OPTRATIO = 2
IF ( OPTRATIO*NR .GT. N ) THEN
DO 1198 p = 1, NR
DO 1199 q = p, N
V(q,p) = CONJG(A(p,q))
1199 CONTINUE
1198 CONTINUE
IF ( NR .GT. 1 )
$ CALL CLASET('U',NR-1,NR-1, CZERO,CZERO, V(1,2),LDV)
*
CALL CLASET('A',N,N-NR,CZERO,CZERO,V(1,NR+1),LDV)
CALL CGESVD( 'O', 'A', N, N, V, LDV, S, V, LDV,
$ U, LDU, CWORK(N+1), LCWORK-N, RWORK, INFO )
*
DO 1113 p = 1, N
V(p,p) = CONJG(V(p,p))
DO 1114 q = p + 1, N
CTMP = CONJG(V(q,p))
V(q,p) = CONJG(V(p,q))
V(p,q) = CTMP
1114 CONTINUE
1113 CONTINUE
CALL CLAPMT( .FALSE., N, N, V, LDV, IWORK )
* .. assemble the left singular vector matrix U of dimensions
* (M x N1), i.e. (M x N) or (M x M).
*
DO 1111 p = 1, N
U(p,p) = CONJG(U(p,p))
DO 1112 q = p + 1, N
CTMP = CONJG(U(q,p))
U(q,p) = CONJG(U(p,q))
U(p,q) = CTMP
1112 CONTINUE
1111 CONTINUE
*
IF ( ( N .LT. M ) .AND. .NOT.(WNTUF)) THEN
CALL CLASET('A',M-N,N,CZERO,CZERO,U(N+1,1),LDU)
IF ( N .LT. N1 ) THEN
CALL CLASET('A',N,N1-N,CZERO,CZERO,U(1,N+1),LDU)
CALL CLASET('A',M-N,N1-N,CZERO,CONE,
$ U(N+1,N+1), LDU )
END IF
END IF
ELSE
* .. copy R**H into [U] and overwrite [U] with the right
* singular vectors of R
DO 1196 p = 1, NR
DO 1197 q = p, N
U(q,NR+p) = CONJG(A(p,q))
1197 CONTINUE
1196 CONTINUE
IF ( NR .GT. 1 )
$ CALL CLASET('U',NR-1,NR-1,CZERO,CZERO,U(1,NR+2),LDU)
CALL CGEQRF( N, NR, U(1,NR+1), LDU, CWORK(N+1),
$ CWORK(N+NR+1), LCWORK-N-NR, IERR )
DO 1143 p = 1, NR
DO 1144 q = 1, N
V(q,p) = CONJG(U(p,NR+q))
1144 CONTINUE
1143 CONTINUE
CALL CLASET('U',NR-1,NR-1,CZERO,CZERO,V(1,2),LDV)
CALL CGESVD( 'S', 'O', NR, NR, V, LDV, S, U, LDU,
$ V,LDV, CWORK(N+NR+1),LCWORK-N-NR,RWORK, INFO )
CALL CLASET('A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV)
CALL CLASET('A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV)
CALL CLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
CALL CUNMQR('R','C', N, N, NR, U(1,NR+1), LDU,
$ CWORK(N+1),V,LDV,CWORK(N+NR+1),LCWORK-N-NR,IERR)
CALL CLAPMT( .FALSE., N, N, V, LDV, IWORK )
* .. assemble the left singular vector matrix U of dimensions
* (M x NR) or (M x N) or (M x M).
IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN
CALL CLASET('A',M-NR,NR,CZERO,CZERO,U(NR+1,1),LDU)
IF ( NR .LT. N1 ) THEN
CALL CLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU)
CALL CLASET( 'A',M-NR,N1-NR,CZERO,CONE,
$ U(NR+1,NR+1),LDU)
END IF
END IF
END IF
END IF
*
ELSE
*
* .. apply CGESVD to R [[this is the recommended option]]
*
IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN
* .. copy R into [V] and overwrite V with the right singular vectors
CALL CLACPY( 'U', NR, N, A, LDA, V, LDV )
IF ( NR .GT. 1 )
$ CALL CLASET( 'L', NR-1,NR-1, CZERO,CZERO, V(2,1), LDV )
* .. the right singular vectors of R overwrite [V], the NR left
* singular vectors of R stored in [U](1:NR,1:NR)
CALL CGESVD( 'S', 'O', NR, N, V, LDV, S, U, LDU,
$ V, LDV, CWORK(N+1), LCWORK-N, RWORK, INFO )
CALL CLAPMT( .FALSE., NR, N, V, LDV, IWORK )
* .. now [V](1:NR,1:N) contains V(1:N,1:NR)**H
* .. assemble the left singular vector matrix U of dimensions
* (M x NR) or (M x N) or (M x M).
IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN
CALL CLASET('A', M-NR,NR, CZERO,CZERO, U(NR+1,1), LDU)
IF ( NR .LT. N1 ) THEN
CALL CLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU)
CALL CLASET( 'A',M-NR,N1-NR,CZERO,CONE,
$ U(NR+1,NR+1), LDU )
END IF
END IF
*
ELSE
* .. need all N right singular vectors and NR < N
* .. the requested number of the left singular vectors
* is then N1 (N or M)
* [[The optimal ratio N/NR for using LQ instead of padding
* with zeros. Here hard coded to 2; it must be at least
* two due to work space constraints.]]
* OPTRATIO = ILAENV(6, 'CGESVD', 'S' // 'O', NR,N,0,0)
* OPTRATIO = MAX( OPTRATIO, 2 )
OPTRATIO = 2
IF ( OPTRATIO * NR .GT. N ) THEN
CALL CLACPY( 'U', NR, N, A, LDA, V, LDV )
IF ( NR .GT. 1 )
$ CALL CLASET('L', NR-1,NR-1, CZERO,CZERO, V(2,1),LDV)
* .. the right singular vectors of R overwrite [V], the NR left
* singular vectors of R stored in [U](1:NR,1:NR)
CALL CLASET('A', N-NR,N, CZERO,CZERO, V(NR+1,1),LDV)
CALL CGESVD( 'S', 'O', N, N, V, LDV, S, U, LDU,
$ V, LDV, CWORK(N+1), LCWORK-N, RWORK, INFO )
CALL CLAPMT( .FALSE., N, N, V, LDV, IWORK )
* .. now [V] contains the adjoint of the matrix of the right
* singular vectors of A. The leading N left singular vectors
* are in [U](1:N,1:N)
* .. assemble the left singular vector matrix U of dimensions
* (M x N1), i.e. (M x N) or (M x M).
IF ( ( N .LT. M ) .AND. .NOT.(WNTUF)) THEN
CALL CLASET('A',M-N,N,CZERO,CZERO,U(N+1,1),LDU)
IF ( N .LT. N1 ) THEN
CALL CLASET('A',N,N1-N,CZERO,CZERO,U(1,N+1),LDU)
CALL CLASET( 'A',M-N,N1-N,CZERO,CONE,
$ U(N+1,N+1), LDU )
END IF
END IF
ELSE
CALL CLACPY( 'U', NR, N, A, LDA, U(NR+1,1), LDU )
IF ( NR .GT. 1 )
$ CALL CLASET('L',NR-1,NR-1,CZERO,CZERO,U(NR+2,1),LDU)
CALL CGELQF( NR, N, U(NR+1,1), LDU, CWORK(N+1),
$ CWORK(N+NR+1), LCWORK-N-NR, IERR )
CALL CLACPY('L',NR,NR,U(NR+1,1),LDU,V,LDV)
IF ( NR .GT. 1 )
$ CALL CLASET('U',NR-1,NR-1,CZERO,CZERO,V(1,2),LDV)
CALL CGESVD( 'S', 'O', NR, NR, V, LDV, S, U, LDU,
$ V, LDV, CWORK(N+NR+1), LCWORK-N-NR, RWORK, INFO )
CALL CLASET('A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV)
CALL CLASET('A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV)
CALL CLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
CALL CUNMLQ('R','N',N,N,NR,U(NR+1,1),LDU,CWORK(N+1),
$ V, LDV, CWORK(N+NR+1),LCWORK-N-NR,IERR)
CALL CLAPMT( .FALSE., N, N, V, LDV, IWORK )
* .. assemble the left singular vector matrix U of dimensions
* (M x NR) or (M x N) or (M x M).
IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN
CALL CLASET('A',M-NR,NR,CZERO,CZERO,U(NR+1,1),LDU)
IF ( NR .LT. N1 ) THEN
CALL CLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU)
CALL CLASET( 'A',M-NR,N1-NR,CZERO,CONE,
$ U(NR+1,NR+1), LDU )
END IF
END IF
END IF
END IF
* .. end of the "R**H or R" branch
END IF
*
* The Q matrix from the first QRF is built into the left singular
* vectors matrix U.
*
IF ( .NOT. WNTUF )
$ CALL CUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
$ LDU, CWORK(N+1), LCWORK-N, IERR )
IF ( ROWPRM .AND. .NOT.WNTUF )
$ CALL CLASWP( N1, U, LDU, 1, M-1, IWORK(N+1), -1 )
*
* ... end of the "full SVD" branch
END IF
*
* Check whether some singular values are returned as zeros, e.g.
* due to underflow, and update the numerical rank.
p = NR
DO 4001 q = p, 1, -1
IF ( S(q) .GT. ZERO ) GO TO 4002
NR = NR - 1
4001 CONTINUE
4002 CONTINUE
*
* .. if numerical rank deficiency is detected, the truncated
* singular values are set to zero.
IF ( NR .LT. N ) CALL SLASET( 'G', N-NR,1, ZERO,ZERO, S(NR+1), N )
* .. undo scaling; this may cause overflow in the largest singular
* values.
IF ( ASCALED )
$ CALL SLASCL( 'G',0,0, ONE,SQRT(REAL(M)), NR,1, S, N, IERR )
IF ( CONDA ) RWORK(1) = SCONDA
RWORK(2) = p - NR
* .. p-NR is the number of singular values that are computed as
* exact zeros in CGESVD() applied to the (possibly truncated)
* full row rank triangular (trapezoidal) factor of A.
NUMRANK = NR
*
RETURN
*
* End of CGESVDQ
*
END
|