1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
*> \brief \b CGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CGTTS2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgtts2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgtts2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgtts2.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
*
* .. Scalar Arguments ..
* INTEGER ITRANS, LDB, N, NRHS
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGTTS2 solves one of the systems of equations
*> A * X = B, A**T * X = B, or A**H * X = B,
*> with a tridiagonal matrix A using the LU factorization computed
*> by CGTTRF.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ITRANS
*> \verbatim
*> ITRANS is INTEGER
*> Specifies the form of the system of equations.
*> = 0: A * X = B (No transpose)
*> = 1: A**T * X = B (Transpose)
*> = 2: A**H * X = B (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrix B. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] DL
*> \verbatim
*> DL is COMPLEX array, dimension (N-1)
*> The (n-1) multipliers that define the matrix L from the
*> LU factorization of A.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is COMPLEX array, dimension (N)
*> The n diagonal elements of the upper triangular matrix U from
*> the LU factorization of A.
*> \endverbatim
*>
*> \param[in] DU
*> \verbatim
*> DU is COMPLEX array, dimension (N-1)
*> The (n-1) elements of the first super-diagonal of U.
*> \endverbatim
*>
*> \param[in] DU2
*> \verbatim
*> DU2 is COMPLEX array, dimension (N-2)
*> The (n-2) elements of the second super-diagonal of U.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> The pivot indices; for 1 <= i <= n, row i of the matrix was
*> interchanged with row IPIV(i). IPIV(i) will always be either
*> i or i+1; IPIV(i) = i indicates a row interchange was not
*> required.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB,NRHS)
*> On entry, the matrix of right hand side vectors B.
*> On exit, B is overwritten by the solution vectors X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexGTcomputational
*
* =====================================================================
SUBROUTINE CGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER ITRANS, LDB, N, NRHS
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, J
COMPLEX TEMP
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.EQ.0 .OR. NRHS.EQ.0 )
$ RETURN
*
IF( ITRANS.EQ.0 ) THEN
*
* Solve A*X = B using the LU factorization of A,
* overwriting each right hand side vector with its solution.
*
IF( NRHS.LE.1 ) THEN
J = 1
10 CONTINUE
*
* Solve L*x = b.
*
DO 20 I = 1, N - 1
IF( IPIV( I ).EQ.I ) THEN
B( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J )
ELSE
TEMP = B( I, J )
B( I, J ) = B( I+1, J )
B( I+1, J ) = TEMP - DL( I )*B( I, J )
END IF
20 CONTINUE
*
* Solve U*x = b.
*
B( N, J ) = B( N, J ) / D( N )
IF( N.GT.1 )
$ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
$ D( N-1 )
DO 30 I = N - 2, 1, -1
B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
$ B( I+2, J ) ) / D( I )
30 CONTINUE
IF( J.LT.NRHS ) THEN
J = J + 1
GO TO 10
END IF
ELSE
DO 60 J = 1, NRHS
*
* Solve L*x = b.
*
DO 40 I = 1, N - 1
IF( IPIV( I ).EQ.I ) THEN
B( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J )
ELSE
TEMP = B( I, J )
B( I, J ) = B( I+1, J )
B( I+1, J ) = TEMP - DL( I )*B( I, J )
END IF
40 CONTINUE
*
* Solve U*x = b.
*
B( N, J ) = B( N, J ) / D( N )
IF( N.GT.1 )
$ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
$ D( N-1 )
DO 50 I = N - 2, 1, -1
B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
$ B( I+2, J ) ) / D( I )
50 CONTINUE
60 CONTINUE
END IF
ELSE IF( ITRANS.EQ.1 ) THEN
*
* Solve A**T * X = B.
*
IF( NRHS.LE.1 ) THEN
J = 1
70 CONTINUE
*
* Solve U**T * x = b.
*
B( 1, J ) = B( 1, J ) / D( 1 )
IF( N.GT.1 )
$ B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
DO 80 I = 3, N
B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-DU2( I-2 )*
$ B( I-2, J ) ) / D( I )
80 CONTINUE
*
* Solve L**T * x = b.
*
DO 90 I = N - 1, 1, -1
IF( IPIV( I ).EQ.I ) THEN
B( I, J ) = B( I, J ) - DL( I )*B( I+1, J )
ELSE
TEMP = B( I+1, J )
B( I+1, J ) = B( I, J ) - DL( I )*TEMP
B( I, J ) = TEMP
END IF
90 CONTINUE
IF( J.LT.NRHS ) THEN
J = J + 1
GO TO 70
END IF
ELSE
DO 120 J = 1, NRHS
*
* Solve U**T * x = b.
*
B( 1, J ) = B( 1, J ) / D( 1 )
IF( N.GT.1 )
$ B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
DO 100 I = 3, N
B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-
$ DU2( I-2 )*B( I-2, J ) ) / D( I )
100 CONTINUE
*
* Solve L**T * x = b.
*
DO 110 I = N - 1, 1, -1
IF( IPIV( I ).EQ.I ) THEN
B( I, J ) = B( I, J ) - DL( I )*B( I+1, J )
ELSE
TEMP = B( I+1, J )
B( I+1, J ) = B( I, J ) - DL( I )*TEMP
B( I, J ) = TEMP
END IF
110 CONTINUE
120 CONTINUE
END IF
ELSE
*
* Solve A**H * X = B.
*
IF( NRHS.LE.1 ) THEN
J = 1
130 CONTINUE
*
* Solve U**H * x = b.
*
B( 1, J ) = B( 1, J ) / CONJG( D( 1 ) )
IF( N.GT.1 )
$ B( 2, J ) = ( B( 2, J )-CONJG( DU( 1 ) )*B( 1, J ) ) /
$ CONJG( D( 2 ) )
DO 140 I = 3, N
B( I, J ) = ( B( I, J )-CONJG( DU( I-1 ) )*B( I-1, J )-
$ CONJG( DU2( I-2 ) )*B( I-2, J ) ) /
$ CONJG( D( I ) )
140 CONTINUE
*
* Solve L**H * x = b.
*
DO 150 I = N - 1, 1, -1
IF( IPIV( I ).EQ.I ) THEN
B( I, J ) = B( I, J ) - CONJG( DL( I ) )*B( I+1, J )
ELSE
TEMP = B( I+1, J )
B( I+1, J ) = B( I, J ) - CONJG( DL( I ) )*TEMP
B( I, J ) = TEMP
END IF
150 CONTINUE
IF( J.LT.NRHS ) THEN
J = J + 1
GO TO 130
END IF
ELSE
DO 180 J = 1, NRHS
*
* Solve U**H * x = b.
*
B( 1, J ) = B( 1, J ) / CONJG( D( 1 ) )
IF( N.GT.1 )
$ B( 2, J ) = ( B( 2, J )-CONJG( DU( 1 ) )*B( 1, J ) ) /
$ CONJG( D( 2 ) )
DO 160 I = 3, N
B( I, J ) = ( B( I, J )-CONJG( DU( I-1 ) )*
$ B( I-1, J )-CONJG( DU2( I-2 ) )*
$ B( I-2, J ) ) / CONJG( D( I ) )
160 CONTINUE
*
* Solve L**H * x = b.
*
DO 170 I = N - 1, 1, -1
IF( IPIV( I ).EQ.I ) THEN
B( I, J ) = B( I, J ) - CONJG( DL( I ) )*
$ B( I+1, J )
ELSE
TEMP = B( I+1, J )
B( I+1, J ) = B( I, J ) - CONJG( DL( I ) )*TEMP
B( I, J ) = TEMP
END IF
170 CONTINUE
180 CONTINUE
END IF
END IF
*
* End of CGTTS2
*
END
|