1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
|
* \brief \b CLAHEF_ROOK computes a partial factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method (blocked algorithm, calling Level 3 BLAS).
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLAHEF_ROOK + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahef_rook.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahef_rook.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahef_rook.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CLAHEF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, KB, LDA, LDW, N, NB
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX A( LDA, * ), W( LDW, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLAHEF_ROOK computes a partial factorization of a complex Hermitian
*> matrix A using the bounded Bunch-Kaufman ("rook") diagonal pivoting
*> method. The partial factorization has the form:
*>
*> A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
*> ( 0 U22 ) ( 0 D ) ( U12**H U22**H )
*>
*> A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L'
*> ( L21 I ) ( 0 A22 ) ( 0 I )
*>
*> where the order of D is at most NB. The actual order is returned in
*> the argument KB, and is either NB or NB-1, or N if N <= NB.
*> Note that U**H denotes the conjugate transpose of U.
*>
*> CLAHEF_ROOK is an auxiliary routine called by CHETRF_ROOK. It uses
*> blocked code (calling Level 3 BLAS) to update the submatrix
*> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> Hermitian matrix A is stored:
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NB
*> \verbatim
*> NB is INTEGER
*> The maximum number of columns of the matrix A that should be
*> factored. NB should be at least 2 to allow for 2-by-2 pivot
*> blocks.
*> \endverbatim
*>
*> \param[out] KB
*> \verbatim
*> KB is INTEGER
*> The number of columns of A that were actually factored.
*> KB is either NB-1 or NB, or N if N <= NB.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
*> n-by-n upper triangular part of A contains the upper
*> triangular part of the matrix A, and the strictly lower
*> triangular part of A is not referenced. If UPLO = 'L', the
*> leading n-by-n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
*> On exit, A contains details of the partial factorization.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> Details of the interchanges and the block structure of D.
*>
*> If UPLO = 'U':
*> Only the last KB elements of IPIV are set.
*>
*> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
*> interchanged and D(k,k) is a 1-by-1 diagonal block.
*>
*> If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
*> columns k and -IPIV(k) were interchanged and rows and
*> columns k-1 and -IPIV(k-1) were inerchaged,
*> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
*>
*> If UPLO = 'L':
*> Only the first KB elements of IPIV are set.
*>
*> If IPIV(k) > 0, then rows and columns k and IPIV(k)
*> were interchanged and D(k,k) is a 1-by-1 diagonal block.
*>
*> If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
*> columns k and -IPIV(k) were interchanged and rows and
*> columns k+1 and -IPIV(k+1) were inerchaged,
*> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*> W is COMPLEX array, dimension (LDW,NB)
*> \endverbatim
*>
*> \param[in] LDW
*> \verbatim
*> LDW is INTEGER
*> The leading dimension of the array W. LDW >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> > 0: if INFO = k, D(k,k) is exactly zero. The factorization
*> has been completed, but the block diagonal matrix D is
*> exactly singular.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2013
*
*> \ingroup complexHEcomputational
*
*> \par Contributors:
* ==================
*>
*> \verbatim
*>
*> November 2013, Igor Kozachenko,
*> Computer Science Division,
*> University of California, Berkeley
*>
*> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
*> School of Mathematics,
*> University of Manchester
*> \endverbatim
*
* =====================================================================
SUBROUTINE CLAHEF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW,
$ INFO )
*
* -- LAPACK computational routine (version 3.5.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2013
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, KB, LDA, LDW, N, NB
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX A( LDA, * ), W( LDW, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CONE
PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
REAL EIGHT, SEVTEN
PARAMETER ( EIGHT = 8.0E+0, SEVTEN = 17.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL DONE
INTEGER IMAX, ITEMP, II, J, JB, JJ, JMAX, JP1, JP2, K,
$ KK, KKW, KP, KSTEP, KW, P
REAL ABSAKK, ALPHA, COLMAX, STEMP, R1, ROWMAX, T,
$ SFMIN
COMPLEX D11, D21, D22, Z
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICAMAX
REAL SLAMCH
EXTERNAL LSAME, ICAMAX, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CCOPY, CSSCAL, CGEMM, CGEMV, CLACGV, CSWAP
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CONJG, AIMAG, MAX, MIN, REAL, SQRT
* ..
* .. Statement Functions ..
REAL CABS1
* ..
* .. Statement Function definitions ..
CABS1( Z ) = ABS( REAL( Z ) ) + ABS( AIMAG( Z ) )
* ..
* .. Executable Statements ..
*
INFO = 0
*
* Initialize ALPHA for use in choosing pivot block size.
*
ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
*
* Compute machine safe minimum
*
SFMIN = SLAMCH( 'S' )
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Factorize the trailing columns of A using the upper triangle
* of A and working backwards, and compute the matrix W = U12*D
* for use in updating A11 (note that conjg(W) is actually stored)
*
* K is the main loop index, decreasing from N in steps of 1 or 2
*
K = N
10 CONTINUE
*
* KW is the column of W which corresponds to column K of A
*
KW = NB + K - N
*
* Exit from loop
*
IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
$ GO TO 30
*
KSTEP = 1
P = K
*
* Copy column K of A to column KW of W and update it
*
IF( K.GT.1 )
$ CALL CCOPY( K-1, A( 1, K ), 1, W( 1, KW ), 1 )
W( K, KW ) = REAL( A( K, K ) )
IF( K.LT.N ) THEN
CALL CGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ), LDA,
$ W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
W( K, KW ) = REAL( W( K, KW ) )
END IF
*
* Determine rows and columns to be interchanged and whether
* a 1-by-1 or 2-by-2 pivot block will be used
*
ABSAKK = ABS( REAL( W( K, KW ) ) )
*
* IMAX is the row-index of the largest off-diagonal element in
* column K, and COLMAX is its absolute value.
* Determine both COLMAX and IMAX.
*
IF( K.GT.1 ) THEN
IMAX = ICAMAX( K-1, W( 1, KW ), 1 )
COLMAX = CABS1( W( IMAX, KW ) )
ELSE
COLMAX = ZERO
END IF
*
IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
*
* Column K is zero or underflow: set INFO and continue
*
IF( INFO.EQ.0 )
$ INFO = K
KP = K
A( K, K ) = REAL( W( K, KW ) )
IF( K.GT.1 )
$ CALL CCOPY( K-1, W( 1, KW ), 1, A( 1, K ), 1 )
ELSE
*
* ============================================================
*
* BEGIN pivot search
*
* Case(1)
* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
* (used to handle NaN and Inf)
IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
*
* no interchange, use 1-by-1 pivot block
*
KP = K
*
ELSE
*
* Lop until pivot found
*
DONE = .FALSE.
*
12 CONTINUE
*
* BEGIN pivot search loop body
*
*
* Copy column IMAX to column KW-1 of W and update it
*
IF( IMAX.GT.1 )
$ CALL CCOPY( IMAX-1, A( 1, IMAX ), 1, W( 1, KW-1 ),
$ 1 )
W( IMAX, KW-1 ) = REAL( A( IMAX, IMAX ) )
*
CALL CCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
$ W( IMAX+1, KW-1 ), 1 )
CALL CLACGV( K-IMAX, W( IMAX+1, KW-1 ), 1 )
*
IF( K.LT.N ) THEN
CALL CGEMV( 'No transpose', K, N-K, -CONE,
$ A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
$ CONE, W( 1, KW-1 ), 1 )
W( IMAX, KW-1 ) = REAL( W( IMAX, KW-1 ) )
END IF
*
* JMAX is the column-index of the largest off-diagonal
* element in row IMAX, and ROWMAX is its absolute value.
* Determine both ROWMAX and JMAX.
*
IF( IMAX.NE.K ) THEN
JMAX = IMAX + ICAMAX( K-IMAX, W( IMAX+1, KW-1 ),
$ 1 )
ROWMAX = CABS1( W( JMAX, KW-1 ) )
ELSE
ROWMAX = ZERO
END IF
*
IF( IMAX.GT.1 ) THEN
ITEMP = ICAMAX( IMAX-1, W( 1, KW-1 ), 1 )
STEMP = CABS1( W( ITEMP, KW-1 ) )
IF( STEMP.GT.ROWMAX ) THEN
ROWMAX = STEMP
JMAX = ITEMP
END IF
END IF
*
* Case(2)
* Equivalent to testing for
* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX
* (used to handle NaN and Inf)
*
IF( .NOT.( ABS( REAL( W( IMAX,KW-1 ) ) )
$ .LT.ALPHA*ROWMAX ) ) THEN
*
* interchange rows and columns K and IMAX,
* use 1-by-1 pivot block
*
KP = IMAX
*
* copy column KW-1 of W to column KW of W
*
CALL CCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
*
DONE = .TRUE.
*
* Case(3)
* Equivalent to testing for ROWMAX.EQ.COLMAX,
* (used to handle NaN and Inf)
*
ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
$ THEN
*
* interchange rows and columns K-1 and IMAX,
* use 2-by-2 pivot block
*
KP = IMAX
KSTEP = 2
DONE = .TRUE.
*
* Case(4)
ELSE
*
* Pivot not found: set params and repeat
*
P = IMAX
COLMAX = ROWMAX
IMAX = JMAX
*
* Copy updated JMAXth (next IMAXth) column to Kth of W
*
CALL CCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
*
END IF
*
*
* END pivot search loop body
*
IF( .NOT.DONE ) GOTO 12
*
END IF
*
* END pivot search
*
* ============================================================
*
* KK is the column of A where pivoting step stopped
*
KK = K - KSTEP + 1
*
* KKW is the column of W which corresponds to column KK of A
*
KKW = NB + KK - N
*
* Interchange rows and columns P and K.
* Updated column P is already stored in column KW of W.
*
IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
*
* Copy non-updated column K to column P of submatrix A
* at step K. No need to copy element into columns
* K and K-1 of A for 2-by-2 pivot, since these columns
* will be later overwritten.
*
A( P, P ) = REAL( A( K, K ) )
CALL CCOPY( K-1-P, A( P+1, K ), 1, A( P, P+1 ),
$ LDA )
CALL CLACGV( K-1-P, A( P, P+1 ), LDA )
IF( P.GT.1 )
$ CALL CCOPY( P-1, A( 1, K ), 1, A( 1, P ), 1 )
*
* Interchange rows K and P in the last K+1 to N columns of A
* (columns K and K-1 of A for 2-by-2 pivot will be
* later overwritten). Interchange rows K and P
* in last KKW to NB columns of W.
*
IF( K.LT.N )
$ CALL CSWAP( N-K, A( K, K+1 ), LDA, A( P, K+1 ),
$ LDA )
CALL CSWAP( N-KK+1, W( K, KKW ), LDW, W( P, KKW ),
$ LDW )
END IF
*
* Interchange rows and columns KP and KK.
* Updated column KP is already stored in column KKW of W.
*
IF( KP.NE.KK ) THEN
*
* Copy non-updated column KK to column KP of submatrix A
* at step K. No need to copy element into column K
* (or K and K-1 for 2-by-2 pivot) of A, since these columns
* will be later overwritten.
*
A( KP, KP ) = REAL( A( KK, KK ) )
CALL CCOPY( KK-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
$ LDA )
CALL CLACGV( KK-1-KP, A( KP, KP+1 ), LDA )
IF( KP.GT.1 )
$ CALL CCOPY( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
*
* Interchange rows KK and KP in last K+1 to N columns of A
* (columns K (or K and K-1 for 2-by-2 pivot) of A will be
* later overwritten). Interchange rows KK and KP
* in last KKW to NB columns of W.
*
IF( K.LT.N )
$ CALL CSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
$ LDA )
CALL CSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
$ LDW )
END IF
*
IF( KSTEP.EQ.1 ) THEN
*
* 1-by-1 pivot block D(k): column kw of W now holds
*
* W(kw) = U(k)*D(k),
*
* where U(k) is the k-th column of U
*
* (1) Store subdiag. elements of column U(k)
* and 1-by-1 block D(k) in column k of A.
* (NOTE: Diagonal element U(k,k) is a UNIT element
* and not stored)
* A(k,k) := D(k,k) = W(k,kw)
* A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k)
*
* (NOTE: No need to use for Hermitian matrix
* A( K, K ) = REAL( W( K, K) ) to separately copy diagonal
* element D(k,k) from W (potentially saves only one load))
CALL CCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
IF( K.GT.1 ) THEN
*
* (NOTE: No need to check if A(k,k) is NOT ZERO,
* since that was ensured earlier in pivot search:
* case A(k,k) = 0 falls into 2x2 pivot case(3))
*
* Handle division by a small number
*
T = REAL( A( K, K ) )
IF( ABS( T ).GE.SFMIN ) THEN
R1 = ONE / T
CALL CSSCAL( K-1, R1, A( 1, K ), 1 )
ELSE
DO 14 II = 1, K-1
A( II, K ) = A( II, K ) / T
14 CONTINUE
END IF
*
* (2) Conjugate column W(kw)
*
CALL CLACGV( K-1, W( 1, KW ), 1 )
END IF
*
ELSE
*
* 2-by-2 pivot block D(k): columns kw and kw-1 of W now hold
*
* ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k)
*
* where U(k) and U(k-1) are the k-th and (k-1)-th columns
* of U
*
* (1) Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2
* block D(k-1:k,k-1:k) in columns k-1 and k of A.
* (NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT
* block and not stored)
* A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw)
* A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) =
* = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) )
*
IF( K.GT.2 ) THEN
*
* Factor out the columns of the inverse of 2-by-2 pivot
* block D, so that each column contains 1, to reduce the
* number of FLOPS when we multiply panel
* ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
*
* D**(-1) = ( d11 cj(d21) )**(-1) =
* ( d21 d22 )
*
* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
* ( (-d21) ( d11 ) )
*
* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
*
* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) =
* ( ( -1 ) ( d11/conj(d21) ) )
*
* = 1/(|d21|**2) * 1/(D22*D11-1) *
*
* * ( d21*( D11 ) conj(d21)*( -1 ) ) =
* ( ( -1 ) ( D22 ) )
*
* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) =
* ( ( -1 ) ( D22 ) )
*
* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) =
* ( ( -1 ) ( D22 ) )
*
* Handle division by a small number. (NOTE: order of
* operations is important)
*
* = ( T*(( D11 )/conj(D21)) T*(( -1 )/D21 ) )
* ( (( -1 ) ) (( D22 ) ) ),
*
* where D11 = d22/d21,
* D22 = d11/conj(d21),
* D21 = d21,
* T = 1/(D22*D11-1).
*
* (NOTE: No need to check for division by ZERO,
* since that was ensured earlier in pivot search:
* (a) d21 != 0 in 2x2 pivot case(4),
* since |d21| should be larger than |d11| and |d22|;
* (b) (D22*D11 - 1) != 0, since from (a),
* both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
*
D21 = W( K-1, KW )
D11 = W( K, KW ) / CONJG( D21 )
D22 = W( K-1, KW-1 ) / D21
T = ONE / ( REAL( D11*D22 )-ONE )
*
* Update elements in columns A(k-1) and A(k) as
* dot products of rows of ( W(kw-1) W(kw) ) and columns
* of D**(-1)
*
DO 20 J = 1, K - 2
A( J, K-1 ) = T*( ( D11*W( J, KW-1 )-W( J, KW ) ) /
$ D21 )
A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
$ CONJG( D21 ) )
20 CONTINUE
END IF
*
* Copy D(k) to A
*
A( K-1, K-1 ) = W( K-1, KW-1 )
A( K-1, K ) = W( K-1, KW )
A( K, K ) = W( K, KW )
*
* (2) Conjugate columns W(kw) and W(kw-1)
*
CALL CLACGV( K-1, W( 1, KW ), 1 )
CALL CLACGV( K-2, W( 1, KW-1 ), 1 )
*
END IF
*
END IF
*
* Store details of the interchanges in IPIV
*
IF( KSTEP.EQ.1 ) THEN
IPIV( K ) = KP
ELSE
IPIV( K ) = -P
IPIV( K-1 ) = -KP
END IF
*
* Decrease K and return to the start of the main loop
*
K = K - KSTEP
GO TO 10
*
30 CONTINUE
*
* Update the upper triangle of A11 (= A(1:k,1:k)) as
*
* A11 := A11 - U12*D*U12**H = A11 - U12*W**H
*
* computing blocks of NB columns at a time (note that conjg(W) is
* actually stored)
*
DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
JB = MIN( NB, K-J+1 )
*
* Update the upper triangle of the diagonal block
*
DO 40 JJ = J, J + JB - 1
A( JJ, JJ ) = REAL( A( JJ, JJ ) )
CALL CGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
$ A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
$ A( J, JJ ), 1 )
A( JJ, JJ ) = REAL( A( JJ, JJ ) )
40 CONTINUE
*
* Update the rectangular superdiagonal block
*
IF( J.GE.2 )
$ CALL CGEMM( 'No transpose', 'Transpose', J-1, JB, N-K,
$ -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
$ CONE, A( 1, J ), LDA )
50 CONTINUE
*
* Put U12 in standard form by partially undoing the interchanges
* in of rows in columns k+1:n looping backwards from k+1 to n
*
J = K + 1
60 CONTINUE
*
* Undo the interchanges (if any) of rows J and JP2
* (or J and JP2, and J+1 and JP1) at each step J
*
KSTEP = 1
JP1 = 1
* (Here, J is a diagonal index)
JJ = J
JP2 = IPIV( J )
IF( JP2.LT.0 ) THEN
JP2 = -JP2
* (Here, J is a diagonal index)
J = J + 1
JP1 = -IPIV( J )
KSTEP = 2
END IF
* (NOTE: Here, J is used to determine row length. Length N-J+1
* of the rows to swap back doesn't include diagonal element)
J = J + 1
IF( JP2.NE.JJ .AND. J.LE.N )
$ CALL CSWAP( N-J+1, A( JP2, J ), LDA, A( JJ, J ), LDA )
JJ = JJ + 1
IF( KSTEP.EQ.2 .AND. JP1.NE.JJ .AND. J.LE.N )
$ CALL CSWAP( N-J+1, A( JP1, J ), LDA, A( JJ, J ), LDA )
IF( J.LT.N )
$ GO TO 60
*
* Set KB to the number of columns factorized
*
KB = N - K
*
ELSE
*
* Factorize the leading columns of A using the lower triangle
* of A and working forwards, and compute the matrix W = L21*D
* for use in updating A22 (note that conjg(W) is actually stored)
*
* K is the main loop index, increasing from 1 in steps of 1 or 2
*
K = 1
70 CONTINUE
*
* Exit from loop
*
IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
$ GO TO 90
*
KSTEP = 1
P = K
*
* Copy column K of A to column K of W and update column K of W
*
W( K, K ) = REAL( A( K, K ) )
IF( K.LT.N )
$ CALL CCOPY( N-K, A( K+1, K ), 1, W( K+1, K ), 1 )
IF( K.GT.1 ) THEN
CALL CGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
$ LDA, W( K, 1 ), LDW, CONE, W( K, K ), 1 )
W( K, K ) = REAL( W( K, K ) )
END IF
*
* Determine rows and columns to be interchanged and whether
* a 1-by-1 or 2-by-2 pivot block will be used
*
ABSAKK = ABS( REAL( W( K, K ) ) )
*
* IMAX is the row-index of the largest off-diagonal element in
* column K, and COLMAX is its absolute value.
* Determine both COLMAX and IMAX.
*
IF( K.LT.N ) THEN
IMAX = K + ICAMAX( N-K, W( K+1, K ), 1 )
COLMAX = CABS1( W( IMAX, K ) )
ELSE
COLMAX = ZERO
END IF
*
IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
*
* Column K is zero or underflow: set INFO and continue
*
IF( INFO.EQ.0 )
$ INFO = K
KP = K
A( K, K ) = REAL( W( K, K ) )
IF( K.LT.N )
$ CALL CCOPY( N-K, W( K+1, K ), 1, A( K+1, K ), 1 )
ELSE
*
* ============================================================
*
* BEGIN pivot search
*
* Case(1)
* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
* (used to handle NaN and Inf)
*
IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
*
* no interchange, use 1-by-1 pivot block
*
KP = K
*
ELSE
*
DONE = .FALSE.
*
* Loop until pivot found
*
72 CONTINUE
*
* BEGIN pivot search loop body
*
*
* Copy column IMAX to column k+1 of W and update it
*
CALL CCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
CALL CLACGV( IMAX-K, W( K, K+1 ), 1 )
W( IMAX, K+1 ) = REAL( A( IMAX, IMAX ) )
*
IF( IMAX.LT.N )
$ CALL CCOPY( N-IMAX, A( IMAX+1, IMAX ), 1,
$ W( IMAX+1, K+1 ), 1 )
*
IF( K.GT.1 ) THEN
CALL CGEMV( 'No transpose', N-K+1, K-1, -CONE,
$ A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
$ CONE, W( K, K+1 ), 1 )
W( IMAX, K+1 ) = REAL( W( IMAX, K+1 ) )
END IF
*
* JMAX is the column-index of the largest off-diagonal
* element in row IMAX, and ROWMAX is its absolute value.
* Determine both ROWMAX and JMAX.
*
IF( IMAX.NE.K ) THEN
JMAX = K - 1 + ICAMAX( IMAX-K, W( K, K+1 ), 1 )
ROWMAX = CABS1( W( JMAX, K+1 ) )
ELSE
ROWMAX = ZERO
END IF
*
IF( IMAX.LT.N ) THEN
ITEMP = IMAX + ICAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
STEMP = CABS1( W( ITEMP, K+1 ) )
IF( STEMP.GT.ROWMAX ) THEN
ROWMAX = STEMP
JMAX = ITEMP
END IF
END IF
*
* Case(2)
* Equivalent to testing for
* ABS( REAL( W( IMAX,K+1 ) ) ).GE.ALPHA*ROWMAX
* (used to handle NaN and Inf)
*
IF( .NOT.( ABS( REAL( W( IMAX,K+1 ) ) )
$ .LT.ALPHA*ROWMAX ) ) THEN
*
* interchange rows and columns K and IMAX,
* use 1-by-1 pivot block
*
KP = IMAX
*
* copy column K+1 of W to column K of W
*
CALL CCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
*
DONE = .TRUE.
*
* Case(3)
* Equivalent to testing for ROWMAX.EQ.COLMAX,
* (used to handle NaN and Inf)
*
ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
$ THEN
*
* interchange rows and columns K+1 and IMAX,
* use 2-by-2 pivot block
*
KP = IMAX
KSTEP = 2
DONE = .TRUE.
*
* Case(4)
ELSE
*
* Pivot not found: set params and repeat
*
P = IMAX
COLMAX = ROWMAX
IMAX = JMAX
*
* Copy updated JMAXth (next IMAXth) column to Kth of W
*
CALL CCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
*
END IF
*
*
* End pivot search loop body
*
IF( .NOT.DONE ) GOTO 72
*
END IF
*
* END pivot search
*
* ============================================================
*
* KK is the column of A where pivoting step stopped
*
KK = K + KSTEP - 1
*
* Interchange rows and columns P and K (only for 2-by-2 pivot).
* Updated column P is already stored in column K of W.
*
IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
*
* Copy non-updated column KK-1 to column P of submatrix A
* at step K. No need to copy element into columns
* K and K+1 of A for 2-by-2 pivot, since these columns
* will be later overwritten.
*
A( P, P ) = REAL( A( K, K ) )
CALL CCOPY( P-K-1, A( K+1, K ), 1, A( P, K+1 ), LDA )
CALL CLACGV( P-K-1, A( P, K+1 ), LDA )
IF( P.LT.N )
$ CALL CCOPY( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
*
* Interchange rows K and P in first K-1 columns of A
* (columns K and K+1 of A for 2-by-2 pivot will be
* later overwritten). Interchange rows K and P
* in first KK columns of W.
*
IF( K.GT.1 )
$ CALL CSWAP( K-1, A( K, 1 ), LDA, A( P, 1 ), LDA )
CALL CSWAP( KK, W( K, 1 ), LDW, W( P, 1 ), LDW )
END IF
*
* Interchange rows and columns KP and KK.
* Updated column KP is already stored in column KK of W.
*
IF( KP.NE.KK ) THEN
*
* Copy non-updated column KK to column KP of submatrix A
* at step K. No need to copy element into column K
* (or K and K+1 for 2-by-2 pivot) of A, since these columns
* will be later overwritten.
*
A( KP, KP ) = REAL( A( KK, KK ) )
CALL CCOPY( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
$ LDA )
CALL CLACGV( KP-KK-1, A( KP, KK+1 ), LDA )
IF( KP.LT.N )
$ CALL CCOPY( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
*
* Interchange rows KK and KP in first K-1 columns of A
* (column K (or K and K+1 for 2-by-2 pivot) of A will be
* later overwritten). Interchange rows KK and KP
* in first KK columns of W.
*
IF( K.GT.1 )
$ CALL CSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
CALL CSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
END IF
*
IF( KSTEP.EQ.1 ) THEN
*
* 1-by-1 pivot block D(k): column k of W now holds
*
* W(k) = L(k)*D(k),
*
* where L(k) is the k-th column of L
*
* (1) Store subdiag. elements of column L(k)
* and 1-by-1 block D(k) in column k of A.
* (NOTE: Diagonal element L(k,k) is a UNIT element
* and not stored)
* A(k,k) := D(k,k) = W(k,k)
* A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k)
*
* (NOTE: No need to use for Hermitian matrix
* A( K, K ) = REAL( W( K, K) ) to separately copy diagonal
* element D(k,k) from W (potentially saves only one load))
CALL CCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
IF( K.LT.N ) THEN
*
* (NOTE: No need to check if A(k,k) is NOT ZERO,
* since that was ensured earlier in pivot search:
* case A(k,k) = 0 falls into 2x2 pivot case(3))
*
* Handle division by a small number
*
T = REAL( A( K, K ) )
IF( ABS( T ).GE.SFMIN ) THEN
R1 = ONE / T
CALL CSSCAL( N-K, R1, A( K+1, K ), 1 )
ELSE
DO 74 II = K + 1, N
A( II, K ) = A( II, K ) / T
74 CONTINUE
END IF
*
* (2) Conjugate column W(k)
*
CALL CLACGV( N-K, W( K+1, K ), 1 )
END IF
*
ELSE
*
* 2-by-2 pivot block D(k): columns k and k+1 of W now hold
*
* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
*
* where L(k) and L(k+1) are the k-th and (k+1)-th columns
* of L
*
* (1) Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2
* block D(k:k+1,k:k+1) in columns k and k+1 of A.
* NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT
* block and not stored.
* A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1)
* A(k+2:N,k:k+1) := L(k+2:N,k:k+1) =
* = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) )
*
IF( K.LT.N-1 ) THEN
*
* Factor out the columns of the inverse of 2-by-2 pivot
* block D, so that each column contains 1, to reduce the
* number of FLOPS when we multiply panel
* ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
*
* D**(-1) = ( d11 cj(d21) )**(-1) =
* ( d21 d22 )
*
* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
* ( (-d21) ( d11 ) )
*
* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
*
* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) =
* ( ( -1 ) ( d11/conj(d21) ) )
*
* = 1/(|d21|**2) * 1/(D22*D11-1) *
*
* * ( d21*( D11 ) conj(d21)*( -1 ) ) =
* ( ( -1 ) ( D22 ) )
*
* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) =
* ( ( -1 ) ( D22 ) )
*
* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) =
* ( ( -1 ) ( D22 ) )
*
* Handle division by a small number. (NOTE: order of
* operations is important)
*
* = ( T*(( D11 )/conj(D21)) T*(( -1 )/D21 ) )
* ( (( -1 ) ) (( D22 ) ) ),
*
* where D11 = d22/d21,
* D22 = d11/conj(d21),
* D21 = d21,
* T = 1/(D22*D11-1).
*
* (NOTE: No need to check for division by ZERO,
* since that was ensured earlier in pivot search:
* (a) d21 != 0 in 2x2 pivot case(4),
* since |d21| should be larger than |d11| and |d22|;
* (b) (D22*D11 - 1) != 0, since from (a),
* both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
*
D21 = W( K+1, K )
D11 = W( K+1, K+1 ) / D21
D22 = W( K, K ) / CONJG( D21 )
T = ONE / ( REAL( D11*D22 )-ONE )
*
* Update elements in columns A(k) and A(k+1) as
* dot products of rows of ( W(k) W(k+1) ) and columns
* of D**(-1)
*
DO 80 J = K + 2, N
A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
$ CONJG( D21 ) )
A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
$ D21 )
80 CONTINUE
END IF
*
* Copy D(k) to A
*
A( K, K ) = W( K, K )
A( K+1, K ) = W( K+1, K )
A( K+1, K+1 ) = W( K+1, K+1 )
*
* (2) Conjugate columns W(k) and W(k+1)
*
CALL CLACGV( N-K, W( K+1, K ), 1 )
CALL CLACGV( N-K-1, W( K+2, K+1 ), 1 )
*
END IF
*
END IF
*
* Store details of the interchanges in IPIV
*
IF( KSTEP.EQ.1 ) THEN
IPIV( K ) = KP
ELSE
IPIV( K ) = -P
IPIV( K+1 ) = -KP
END IF
*
* Increase K and return to the start of the main loop
*
K = K + KSTEP
GO TO 70
*
90 CONTINUE
*
* Update the lower triangle of A22 (= A(k:n,k:n)) as
*
* A22 := A22 - L21*D*L21**H = A22 - L21*W**H
*
* computing blocks of NB columns at a time (note that conjg(W) is
* actually stored)
*
DO 110 J = K, N, NB
JB = MIN( NB, N-J+1 )
*
* Update the lower triangle of the diagonal block
*
DO 100 JJ = J, J + JB - 1
A( JJ, JJ ) = REAL( A( JJ, JJ ) )
CALL CGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
$ A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
$ A( JJ, JJ ), 1 )
A( JJ, JJ ) = REAL( A( JJ, JJ ) )
100 CONTINUE
*
* Update the rectangular subdiagonal block
*
IF( J+JB.LE.N )
$ CALL CGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
$ K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
$ LDW, CONE, A( J+JB, J ), LDA )
110 CONTINUE
*
* Put L21 in standard form by partially undoing the interchanges
* of rows in columns 1:k-1 looping backwards from k-1 to 1
*
J = K - 1
120 CONTINUE
*
* Undo the interchanges (if any) of rows J and JP2
* (or J and JP2, and J-1 and JP1) at each step J
*
KSTEP = 1
JP1 = 1
* (Here, J is a diagonal index)
JJ = J
JP2 = IPIV( J )
IF( JP2.LT.0 ) THEN
JP2 = -JP2
* (Here, J is a diagonal index)
J = J - 1
JP1 = -IPIV( J )
KSTEP = 2
END IF
* (NOTE: Here, J is used to determine row length. Length J
* of the rows to swap back doesn't include diagonal element)
J = J - 1
IF( JP2.NE.JJ .AND. J.GE.1 )
$ CALL CSWAP( J, A( JP2, 1 ), LDA, A( JJ, 1 ), LDA )
JJ = JJ -1
IF( KSTEP.EQ.2 .AND. JP1.NE.JJ .AND. J.GE.1 )
$ CALL CSWAP( J, A( JP1, 1 ), LDA, A( JJ, 1 ), LDA )
IF( J.GT.1 )
$ GO TO 120
*
* Set KB to the number of columns factorized
*
KB = K - 1
*
END IF
RETURN
*
* End of CLAHEF_ROOK
*
END
|