1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
|
*> \brief \b CLAIC1 applies one step of incremental condition estimation.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLAIC1 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claic1.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claic1.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claic1.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
*
* .. Scalar Arguments ..
* INTEGER J, JOB
* REAL SEST, SESTPR
* COMPLEX C, GAMMA, S
* ..
* .. Array Arguments ..
* COMPLEX W( J ), X( J )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLAIC1 applies one step of incremental condition estimation in
*> its simplest version:
*>
*> Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
*> lower triangular matrix L, such that
*> twonorm(L*x) = sest
*> Then CLAIC1 computes sestpr, s, c such that
*> the vector
*> [ s*x ]
*> xhat = [ c ]
*> is an approximate singular vector of
*> [ L 0 ]
*> Lhat = [ w**H gamma ]
*> in the sense that
*> twonorm(Lhat*xhat) = sestpr.
*>
*> Depending on JOB, an estimate for the largest or smallest singular
*> value is computed.
*>
*> Note that [s c]**H and sestpr**2 is an eigenpair of the system
*>
*> diag(sest*sest, 0) + [alpha gamma] * [ conjg(alpha) ]
*> [ conjg(gamma) ]
*>
*> where alpha = x**H*w.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOB
*> \verbatim
*> JOB is INTEGER
*> = 1: an estimate for the largest singular value is computed.
*> = 2: an estimate for the smallest singular value is computed.
*> \endverbatim
*>
*> \param[in] J
*> \verbatim
*> J is INTEGER
*> Length of X and W
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX array, dimension (J)
*> The j-vector x.
*> \endverbatim
*>
*> \param[in] SEST
*> \verbatim
*> SEST is REAL
*> Estimated singular value of j by j matrix L
*> \endverbatim
*>
*> \param[in] W
*> \verbatim
*> W is COMPLEX array, dimension (J)
*> The j-vector w.
*> \endverbatim
*>
*> \param[in] GAMMA
*> \verbatim
*> GAMMA is COMPLEX
*> The diagonal element gamma.
*> \endverbatim
*>
*> \param[out] SESTPR
*> \verbatim
*> SESTPR is REAL
*> Estimated singular value of (j+1) by (j+1) matrix Lhat.
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is COMPLEX
*> Sine needed in forming xhat.
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*> C is COMPLEX
*> Cosine needed in forming xhat.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexOTHERauxiliary
*
* =====================================================================
SUBROUTINE CLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
*
* -- LAPACK auxiliary routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER J, JOB
REAL SEST, SESTPR
COMPLEX C, GAMMA, S
* ..
* .. Array Arguments ..
COMPLEX W( J ), X( J )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
REAL HALF, FOUR
PARAMETER ( HALF = 0.5E0, FOUR = 4.0E0 )
* ..
* .. Local Scalars ..
REAL ABSALP, ABSEST, ABSGAM, B, EPS, NORMA, S1, S2,
$ SCL, T, TEST, TMP, ZETA1, ZETA2
COMPLEX ALPHA, COSINE, SINE
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CONJG, MAX, SQRT
* ..
* .. External Functions ..
REAL SLAMCH
COMPLEX CDOTC
EXTERNAL SLAMCH, CDOTC
* ..
* .. Executable Statements ..
*
EPS = SLAMCH( 'Epsilon' )
ALPHA = CDOTC( J, X, 1, W, 1 )
*
ABSALP = ABS( ALPHA )
ABSGAM = ABS( GAMMA )
ABSEST = ABS( SEST )
*
IF( JOB.EQ.1 ) THEN
*
* Estimating largest singular value
*
* special cases
*
IF( SEST.EQ.ZERO ) THEN
S1 = MAX( ABSGAM, ABSALP )
IF( S1.EQ.ZERO ) THEN
S = ZERO
C = ONE
SESTPR = ZERO
ELSE
S = ALPHA / S1
C = GAMMA / S1
TMP = SQRT( S*CONJG( S )+C*CONJG( C ) )
S = S / TMP
C = C / TMP
SESTPR = S1*TMP
END IF
RETURN
ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN
S = ONE
C = ZERO
TMP = MAX( ABSEST, ABSALP )
S1 = ABSEST / TMP
S2 = ABSALP / TMP
SESTPR = TMP*SQRT( S1*S1+S2*S2 )
RETURN
ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN
S1 = ABSGAM
S2 = ABSEST
IF( S1.LE.S2 ) THEN
S = ONE
C = ZERO
SESTPR = S2
ELSE
S = ZERO
C = ONE
SESTPR = S1
END IF
RETURN
ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN
S1 = ABSGAM
S2 = ABSALP
IF( S1.LE.S2 ) THEN
TMP = S1 / S2
SCL = SQRT( ONE+TMP*TMP )
SESTPR = S2*SCL
S = ( ALPHA / S2 ) / SCL
C = ( GAMMA / S2 ) / SCL
ELSE
TMP = S2 / S1
SCL = SQRT( ONE+TMP*TMP )
SESTPR = S1*SCL
S = ( ALPHA / S1 ) / SCL
C = ( GAMMA / S1 ) / SCL
END IF
RETURN
ELSE
*
* normal case
*
ZETA1 = ABSALP / ABSEST
ZETA2 = ABSGAM / ABSEST
*
B = ( ONE-ZETA1*ZETA1-ZETA2*ZETA2 )*HALF
C = ZETA1*ZETA1
IF( B.GT.ZERO ) THEN
T = C / ( B+SQRT( B*B+C ) )
ELSE
T = SQRT( B*B+C ) - B
END IF
*
SINE = -( ALPHA / ABSEST ) / T
COSINE = -( GAMMA / ABSEST ) / ( ONE+T )
TMP = SQRT( SINE*CONJG( SINE )+COSINE*CONJG( COSINE ) )
S = SINE / TMP
C = COSINE / TMP
SESTPR = SQRT( T+ONE )*ABSEST
RETURN
END IF
*
ELSE IF( JOB.EQ.2 ) THEN
*
* Estimating smallest singular value
*
* special cases
*
IF( SEST.EQ.ZERO ) THEN
SESTPR = ZERO
IF( MAX( ABSGAM, ABSALP ).EQ.ZERO ) THEN
SINE = ONE
COSINE = ZERO
ELSE
SINE = -CONJG( GAMMA )
COSINE = CONJG( ALPHA )
END IF
S1 = MAX( ABS( SINE ), ABS( COSINE ) )
S = SINE / S1
C = COSINE / S1
TMP = SQRT( S*CONJG( S )+C*CONJG( C ) )
S = S / TMP
C = C / TMP
RETURN
ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN
S = ZERO
C = ONE
SESTPR = ABSGAM
RETURN
ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN
S1 = ABSGAM
S2 = ABSEST
IF( S1.LE.S2 ) THEN
S = ZERO
C = ONE
SESTPR = S1
ELSE
S = ONE
C = ZERO
SESTPR = S2
END IF
RETURN
ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN
S1 = ABSGAM
S2 = ABSALP
IF( S1.LE.S2 ) THEN
TMP = S1 / S2
SCL = SQRT( ONE+TMP*TMP )
SESTPR = ABSEST*( TMP / SCL )
S = -( CONJG( GAMMA ) / S2 ) / SCL
C = ( CONJG( ALPHA ) / S2 ) / SCL
ELSE
TMP = S2 / S1
SCL = SQRT( ONE+TMP*TMP )
SESTPR = ABSEST / SCL
S = -( CONJG( GAMMA ) / S1 ) / SCL
C = ( CONJG( ALPHA ) / S1 ) / SCL
END IF
RETURN
ELSE
*
* normal case
*
ZETA1 = ABSALP / ABSEST
ZETA2 = ABSGAM / ABSEST
*
NORMA = MAX( ONE+ZETA1*ZETA1+ZETA1*ZETA2,
$ ZETA1*ZETA2+ZETA2*ZETA2 )
*
* See if root is closer to zero or to ONE
*
TEST = ONE + TWO*( ZETA1-ZETA2 )*( ZETA1+ZETA2 )
IF( TEST.GE.ZERO ) THEN
*
* root is close to zero, compute directly
*
B = ( ZETA1*ZETA1+ZETA2*ZETA2+ONE )*HALF
C = ZETA2*ZETA2
T = C / ( B+SQRT( ABS( B*B-C ) ) )
SINE = ( ALPHA / ABSEST ) / ( ONE-T )
COSINE = -( GAMMA / ABSEST ) / T
SESTPR = SQRT( T+FOUR*EPS*EPS*NORMA )*ABSEST
ELSE
*
* root is closer to ONE, shift by that amount
*
B = ( ZETA2*ZETA2+ZETA1*ZETA1-ONE )*HALF
C = ZETA1*ZETA1
IF( B.GE.ZERO ) THEN
T = -C / ( B+SQRT( B*B+C ) )
ELSE
T = B - SQRT( B*B+C )
END IF
SINE = -( ALPHA / ABSEST ) / T
COSINE = -( GAMMA / ABSEST ) / ( ONE+T )
SESTPR = SQRT( ONE+T+FOUR*EPS*EPS*NORMA )*ABSEST
END IF
TMP = SQRT( SINE*CONJG( SINE )+COSINE*CONJG( COSINE ) )
S = SINE / TMP
C = COSINE / TMP
RETURN
*
END IF
END IF
RETURN
*
* End of CLAIC1
*
END
|