1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
*> \brief \b CLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLANTB + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clantb.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clantb.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clantb.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* REAL FUNCTION CLANTB( NORM, UPLO, DIAG, N, K, AB,
* LDAB, WORK )
*
* .. Scalar Arguments ..
* CHARACTER DIAG, NORM, UPLO
* INTEGER K, LDAB, N
* ..
* .. Array Arguments ..
* REAL WORK( * )
* COMPLEX AB( LDAB, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLANTB returns the value of the one norm, or the Frobenius norm, or
*> the infinity norm, or the element of largest absolute value of an
*> n by n triangular band matrix A, with ( k + 1 ) diagonals.
*> \endverbatim
*>
*> \return CLANTB
*> \verbatim
*>
*> CLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*> (
*> ( norm1(A), NORM = '1', 'O' or 'o'
*> (
*> ( normI(A), NORM = 'I' or 'i'
*> (
*> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
*>
*> where norm1 denotes the one norm of a matrix (maximum column sum),
*> normI denotes the infinity norm of a matrix (maximum row sum) and
*> normF denotes the Frobenius norm of a matrix (square root of sum of
*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NORM
*> \verbatim
*> NORM is CHARACTER*1
*> Specifies the value to be returned in CLANTB as described
*> above.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the matrix A is upper or lower triangular.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> Specifies whether or not the matrix A is unit triangular.
*> = 'N': Non-unit triangular
*> = 'U': Unit triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0. When N = 0, CLANTB is
*> set to zero.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The number of super-diagonals of the matrix A if UPLO = 'U',
*> or the number of sub-diagonals of the matrix A if UPLO = 'L'.
*> K >= 0.
*> \endverbatim
*>
*> \param[in] AB
*> \verbatim
*> AB is COMPLEX array, dimension (LDAB,N)
*> The upper or lower triangular band matrix A, stored in the
*> first k+1 rows of AB. The j-th column of A is stored
*> in the j-th column of the array AB as follows:
*> if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).
*> Note that when DIAG = 'U', the elements of the array AB
*> corresponding to the diagonal elements of the matrix A are
*> not referenced, but are assumed to be one.
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*> LDAB is INTEGER
*> The leading dimension of the array AB. LDAB >= K+1.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (MAX(1,LWORK)),
*> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
*> referenced.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexOTHERauxiliary
*
* =====================================================================
REAL FUNCTION CLANTB( NORM, UPLO, DIAG, N, K, AB,
$ LDAB, WORK )
*
* -- LAPACK auxiliary routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
IMPLICIT NONE
* .. Scalar Arguments ..
CHARACTER DIAG, NORM, UPLO
INTEGER K, LDAB, N
* ..
* .. Array Arguments ..
REAL WORK( * )
COMPLEX AB( LDAB, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL UDIAG
INTEGER I, J, L
REAL SUM, VALUE
* ..
* .. Local Arrays ..
REAL SSQ( 2 ), COLSSQ( 2 )
* ..
* .. External Functions ..
LOGICAL LSAME, SISNAN
EXTERNAL LSAME, SISNAN
* ..
* .. External Subroutines ..
EXTERNAL CLASSQ, SCOMBSSQ
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
IF( N.EQ.0 ) THEN
VALUE = ZERO
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
IF( LSAME( DIAG, 'U' ) ) THEN
VALUE = ONE
IF( LSAME( UPLO, 'U' ) ) THEN
DO 20 J = 1, N
DO 10 I = MAX( K+2-J, 1 ), K
SUM = ABS( AB( I, J ) )
IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
10 CONTINUE
20 CONTINUE
ELSE
DO 40 J = 1, N
DO 30 I = 2, MIN( N+1-J, K+1 )
SUM = ABS( AB( I, J ) )
IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
30 CONTINUE
40 CONTINUE
END IF
ELSE
VALUE = ZERO
IF( LSAME( UPLO, 'U' ) ) THEN
DO 60 J = 1, N
DO 50 I = MAX( K+2-J, 1 ), K + 1
SUM = ABS( AB( I, J ) )
IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
50 CONTINUE
60 CONTINUE
ELSE
DO 80 J = 1, N
DO 70 I = 1, MIN( N+1-J, K+1 )
SUM = ABS( AB( I, J ) )
IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
70 CONTINUE
80 CONTINUE
END IF
END IF
ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
*
* Find norm1(A).
*
VALUE = ZERO
UDIAG = LSAME( DIAG, 'U' )
IF( LSAME( UPLO, 'U' ) ) THEN
DO 110 J = 1, N
IF( UDIAG ) THEN
SUM = ONE
DO 90 I = MAX( K+2-J, 1 ), K
SUM = SUM + ABS( AB( I, J ) )
90 CONTINUE
ELSE
SUM = ZERO
DO 100 I = MAX( K+2-J, 1 ), K + 1
SUM = SUM + ABS( AB( I, J ) )
100 CONTINUE
END IF
IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
110 CONTINUE
ELSE
DO 140 J = 1, N
IF( UDIAG ) THEN
SUM = ONE
DO 120 I = 2, MIN( N+1-J, K+1 )
SUM = SUM + ABS( AB( I, J ) )
120 CONTINUE
ELSE
SUM = ZERO
DO 130 I = 1, MIN( N+1-J, K+1 )
SUM = SUM + ABS( AB( I, J ) )
130 CONTINUE
END IF
IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
140 CONTINUE
END IF
ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
* Find normI(A).
*
VALUE = ZERO
IF( LSAME( UPLO, 'U' ) ) THEN
IF( LSAME( DIAG, 'U' ) ) THEN
DO 150 I = 1, N
WORK( I ) = ONE
150 CONTINUE
DO 170 J = 1, N
L = K + 1 - J
DO 160 I = MAX( 1, J-K ), J - 1
WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
160 CONTINUE
170 CONTINUE
ELSE
DO 180 I = 1, N
WORK( I ) = ZERO
180 CONTINUE
DO 200 J = 1, N
L = K + 1 - J
DO 190 I = MAX( 1, J-K ), J
WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
190 CONTINUE
200 CONTINUE
END IF
ELSE
IF( LSAME( DIAG, 'U' ) ) THEN
DO 210 I = 1, N
WORK( I ) = ONE
210 CONTINUE
DO 230 J = 1, N
L = 1 - J
DO 220 I = J + 1, MIN( N, J+K )
WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
220 CONTINUE
230 CONTINUE
ELSE
DO 240 I = 1, N
WORK( I ) = ZERO
240 CONTINUE
DO 260 J = 1, N
L = 1 - J
DO 250 I = J, MIN( N, J+K )
WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
250 CONTINUE
260 CONTINUE
END IF
END IF
DO 270 I = 1, N
SUM = WORK( I )
IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
270 CONTINUE
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
* SSQ(1) is scale
* SSQ(2) is sum-of-squares
* For better accuracy, sum each column separately.
*
IF( LSAME( UPLO, 'U' ) ) THEN
IF( LSAME( DIAG, 'U' ) ) THEN
SSQ( 1 ) = ONE
SSQ( 2 ) = N
IF( K.GT.0 ) THEN
DO 280 J = 2, N
COLSSQ( 1 ) = ZERO
COLSSQ( 2 ) = ONE
CALL CLASSQ( MIN( J-1, K ),
$ AB( MAX( K+2-J, 1 ), J ), 1,
$ COLSSQ( 1 ), COLSSQ( 2 ) )
CALL SCOMBSSQ( SSQ, COLSSQ )
280 CONTINUE
END IF
ELSE
SSQ( 1 ) = ZERO
SSQ( 2 ) = ONE
DO 290 J = 1, N
COLSSQ( 1 ) = ZERO
COLSSQ( 2 ) = ONE
CALL CLASSQ( MIN( J, K+1 ), AB( MAX( K+2-J, 1 ), J ),
$ 1, COLSSQ( 1 ), COLSSQ( 2 ) )
CALL SCOMBSSQ( SSQ, COLSSQ )
290 CONTINUE
END IF
ELSE
IF( LSAME( DIAG, 'U' ) ) THEN
SSQ( 1 ) = ONE
SSQ( 2 ) = N
IF( K.GT.0 ) THEN
DO 300 J = 1, N - 1
COLSSQ( 1 ) = ZERO
COLSSQ( 2 ) = ONE
CALL CLASSQ( MIN( N-J, K ), AB( 2, J ), 1,
$ COLSSQ( 1 ), COLSSQ( 2 ) )
CALL SCOMBSSQ( SSQ, COLSSQ )
300 CONTINUE
END IF
ELSE
SSQ( 1 ) = ZERO
SSQ( 2 ) = ONE
DO 310 J = 1, N
COLSSQ( 1 ) = ZERO
COLSSQ( 2 ) = ONE
CALL CLASSQ( MIN( N-J+1, K+1 ), AB( 1, J ), 1,
$ COLSSQ( 1 ), COLSSQ( 2 ) )
CALL SCOMBSSQ( SSQ, COLSSQ )
310 CONTINUE
END IF
END IF
VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
END IF
*
CLANTB = VALUE
RETURN
*
* End of CLANTB
*
END
|