1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
*> \brief \b CLATRZ factors an upper trapezoidal matrix by means of unitary transformations.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLATRZ + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clatrz.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clatrz.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clatrz.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CLATRZ( M, N, L, A, LDA, TAU, WORK )
*
* .. Scalar Arguments ..
* INTEGER L, LDA, M, N
* ..
* .. Array Arguments ..
* COMPLEX A( LDA, * ), TAU( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLATRZ factors the M-by-(M+L) complex upper trapezoidal matrix
*> [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z by means
*> of unitary transformations, where Z is an (M+L)-by-(M+L) unitary
*> matrix and, R and A1 are M-by-M upper triangular matrices.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] L
*> \verbatim
*> L is INTEGER
*> The number of columns of the matrix A containing the
*> meaningful part of the Householder vectors. N-M >= L >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the leading M-by-N upper trapezoidal part of the
*> array A must contain the matrix to be factorized.
*> On exit, the leading M-by-M upper triangular part of A
*> contains the upper triangular matrix R, and elements N-L+1 to
*> N of the first M rows of A, with the array TAU, represent the
*> unitary matrix Z as a product of M elementary reflectors.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*> TAU is COMPLEX array, dimension (M)
*> The scalar factors of the elementary reflectors.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (M)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexOTHERcomputational
*
*> \par Contributors:
* ==================
*>
*> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The factorization is obtained by Householder's method. The kth
*> transformation matrix, Z( k ), which is used to introduce zeros into
*> the ( m - k + 1 )th row of A, is given in the form
*>
*> Z( k ) = ( I 0 ),
*> ( 0 T( k ) )
*>
*> where
*>
*> T( k ) = I - tau*u( k )*u( k )**H, u( k ) = ( 1 ),
*> ( 0 )
*> ( z( k ) )
*>
*> tau is a scalar and z( k ) is an l element vector. tau and z( k )
*> are chosen to annihilate the elements of the kth row of A2.
*>
*> The scalar tau is returned in the kth element of TAU and the vector
*> u( k ) in the kth row of A2, such that the elements of z( k ) are
*> in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
*> the upper triangular part of A1.
*>
*> Z is given by
*>
*> Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CLATRZ( M, N, L, A, LDA, TAU, WORK )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER L, LDA, M, N
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I
COMPLEX ALPHA
* ..
* .. External Subroutines ..
EXTERNAL CLACGV, CLARFG, CLARZ
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.EQ.0 ) THEN
RETURN
ELSE IF( M.EQ.N ) THEN
DO 10 I = 1, N
TAU( I ) = ZERO
10 CONTINUE
RETURN
END IF
*
DO 20 I = M, 1, -1
*
* Generate elementary reflector H(i) to annihilate
* [ A(i,i) A(i,n-l+1:n) ]
*
CALL CLACGV( L, A( I, N-L+1 ), LDA )
ALPHA = CONJG( A( I, I ) )
CALL CLARFG( L+1, ALPHA, A( I, N-L+1 ), LDA, TAU( I ) )
TAU( I ) = CONJG( TAU( I ) )
*
* Apply H(i) to A(1:i-1,i:n) from the right
*
CALL CLARZ( 'Right', I-1, N-I+1, L, A( I, N-L+1 ), LDA,
$ CONJG( TAU( I ) ), A( 1, I ), LDA, WORK )
A( I, I ) = CONJG( ALPHA )
*
20 CONTINUE
*
RETURN
*
* End of CLATRZ
*
END
|