1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
*> \brief \b CPTEQR
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CPTEQR + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpteqr.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpteqr.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpteqr.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CPTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER COMPZ
* INTEGER INFO, LDZ, N
* ..
* .. Array Arguments ..
* REAL D( * ), E( * ), WORK( * )
* COMPLEX Z( LDZ, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CPTEQR computes all eigenvalues and, optionally, eigenvectors of a
*> symmetric positive definite tridiagonal matrix by first factoring the
*> matrix using SPTTRF and then calling CBDSQR to compute the singular
*> values of the bidiagonal factor.
*>
*> This routine computes the eigenvalues of the positive definite
*> tridiagonal matrix to high relative accuracy. This means that if the
*> eigenvalues range over many orders of magnitude in size, then the
*> small eigenvalues and corresponding eigenvectors will be computed
*> more accurately than, for example, with the standard QR method.
*>
*> The eigenvectors of a full or band positive definite Hermitian matrix
*> can also be found if CHETRD, CHPTRD, or CHBTRD has been used to
*> reduce this matrix to tridiagonal form. (The reduction to
*> tridiagonal form, however, may preclude the possibility of obtaining
*> high relative accuracy in the small eigenvalues of the original
*> matrix, if these eigenvalues range over many orders of magnitude.)
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] COMPZ
*> \verbatim
*> COMPZ is CHARACTER*1
*> = 'N': Compute eigenvalues only.
*> = 'V': Compute eigenvectors of original Hermitian
*> matrix also. Array Z contains the unitary matrix
*> used to reduce the original matrix to tridiagonal
*> form.
*> = 'I': Compute eigenvectors of tridiagonal matrix also.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix. N >= 0.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*> D is REAL array, dimension (N)
*> On entry, the n diagonal elements of the tridiagonal matrix.
*> On normal exit, D contains the eigenvalues, in descending
*> order.
*> \endverbatim
*>
*> \param[in,out] E
*> \verbatim
*> E is REAL array, dimension (N-1)
*> On entry, the (n-1) subdiagonal elements of the tridiagonal
*> matrix.
*> On exit, E has been destroyed.
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*> Z is COMPLEX array, dimension (LDZ, N)
*> On entry, if COMPZ = 'V', the unitary matrix used in the
*> reduction to tridiagonal form.
*> On exit, if COMPZ = 'V', the orthonormal eigenvectors of the
*> original Hermitian matrix;
*> if COMPZ = 'I', the orthonormal eigenvectors of the
*> tridiagonal matrix.
*> If INFO > 0 on exit, Z contains the eigenvectors associated
*> with only the stored eigenvalues.
*> If COMPZ = 'N', then Z is not referenced.
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*> LDZ is INTEGER
*> The leading dimension of the array Z. LDZ >= 1, and if
*> COMPZ = 'V' or 'I', LDZ >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (4*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: if INFO = i, and i is:
*> <= N the Cholesky factorization of the matrix could
*> not be performed because the i-th principal minor
*> was not positive definite.
*> > N the SVD algorithm failed to converge;
*> if INFO = N+i, i off-diagonal elements of the
*> bidiagonal factor did not converge to zero.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexPTcomputational
*
* =====================================================================
SUBROUTINE CPTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
CHARACTER COMPZ
INTEGER INFO, LDZ, N
* ..
* .. Array Arguments ..
REAL D( * ), E( * ), WORK( * )
COMPLEX Z( LDZ, * )
* ..
*
* ====================================================================
*
* .. Parameters ..
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CBDSQR, CLASET, SPTTRF, XERBLA
* ..
* .. Local Arrays ..
COMPLEX C( 1, 1 ), VT( 1, 1 )
* ..
* .. Local Scalars ..
INTEGER I, ICOMPZ, NRU
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
*
IF( LSAME( COMPZ, 'N' ) ) THEN
ICOMPZ = 0
ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
ICOMPZ = 1
ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
ICOMPZ = 2
ELSE
ICOMPZ = -1
END IF
IF( ICOMPZ.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
$ N ) ) ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CPTEQR', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
IF( N.EQ.1 ) THEN
IF( ICOMPZ.GT.0 )
$ Z( 1, 1 ) = CONE
RETURN
END IF
IF( ICOMPZ.EQ.2 )
$ CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDZ )
*
* Call SPTTRF to factor the matrix.
*
CALL SPTTRF( N, D, E, INFO )
IF( INFO.NE.0 )
$ RETURN
DO 10 I = 1, N
D( I ) = SQRT( D( I ) )
10 CONTINUE
DO 20 I = 1, N - 1
E( I ) = E( I )*D( I )
20 CONTINUE
*
* Call CBDSQR to compute the singular values/vectors of the
* bidiagonal factor.
*
IF( ICOMPZ.GT.0 ) THEN
NRU = N
ELSE
NRU = 0
END IF
CALL CBDSQR( 'Lower', N, 0, NRU, 0, D, E, VT, 1, Z, LDZ, C, 1,
$ WORK, INFO )
*
* Square the singular values.
*
IF( INFO.EQ.0 ) THEN
DO 30 I = 1, N
D( I ) = D( I )*D( I )
30 CONTINUE
ELSE
INFO = N + INFO
END IF
*
RETURN
*
* End of CPTEQR
*
END
|