1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
*> \brief \b CPTTRF
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CPTTRF + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpttrf.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpttrf.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpttrf.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CPTTRF( N, D, E, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, N
* ..
* .. Array Arguments ..
* REAL D( * )
* COMPLEX E( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CPTTRF computes the L*D*L**H factorization of a complex Hermitian
*> positive definite tridiagonal matrix A. The factorization may also
*> be regarded as having the form A = U**H *D*U.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*> D is REAL array, dimension (N)
*> On entry, the n diagonal elements of the tridiagonal matrix
*> A. On exit, the n diagonal elements of the diagonal matrix
*> D from the L*D*L**H factorization of A.
*> \endverbatim
*>
*> \param[in,out] E
*> \verbatim
*> E is COMPLEX array, dimension (N-1)
*> On entry, the (n-1) subdiagonal elements of the tridiagonal
*> matrix A. On exit, the (n-1) subdiagonal elements of the
*> unit bidiagonal factor L from the L*D*L**H factorization of A.
*> E can also be regarded as the superdiagonal of the unit
*> bidiagonal factor U from the U**H *D*U factorization of A.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -k, the k-th argument had an illegal value
*> > 0: if INFO = k, the leading minor of order k is not
*> positive definite; if k < N, the factorization could not
*> be completed, while if k = N, the factorization was
*> completed, but D(N) <= 0.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexPTcomputational
*
* =====================================================================
SUBROUTINE CPTTRF( N, D, E, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER INFO, N
* ..
* .. Array Arguments ..
REAL D( * )
COMPLEX E( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, I4
REAL EII, EIR, F, G
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC AIMAG, CMPLX, MOD, REAL
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
CALL XERBLA( 'CPTTRF', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Compute the L*D*L**H (or U**H *D*U) factorization of A.
*
I4 = MOD( N-1, 4 )
DO 10 I = 1, I4
IF( D( I ).LE.ZERO ) THEN
INFO = I
GO TO 20
END IF
EIR = REAL( E( I ) )
EII = AIMAG( E( I ) )
F = EIR / D( I )
G = EII / D( I )
E( I ) = CMPLX( F, G )
D( I+1 ) = D( I+1 ) - F*EIR - G*EII
10 CONTINUE
*
DO 110 I = I4+1, N - 4, 4
*
* Drop out of the loop if d(i) <= 0: the matrix is not positive
* definite.
*
IF( D( I ).LE.ZERO ) THEN
INFO = I
GO TO 20
END IF
*
* Solve for e(i) and d(i+1).
*
EIR = REAL( E( I ) )
EII = AIMAG( E( I ) )
F = EIR / D( I )
G = EII / D( I )
E( I ) = CMPLX( F, G )
D( I+1 ) = D( I+1 ) - F*EIR - G*EII
*
IF( D( I+1 ).LE.ZERO ) THEN
INFO = I+1
GO TO 20
END IF
*
* Solve for e(i+1) and d(i+2).
*
EIR = REAL( E( I+1 ) )
EII = AIMAG( E( I+1 ) )
F = EIR / D( I+1 )
G = EII / D( I+1 )
E( I+1 ) = CMPLX( F, G )
D( I+2 ) = D( I+2 ) - F*EIR - G*EII
*
IF( D( I+2 ).LE.ZERO ) THEN
INFO = I+2
GO TO 20
END IF
*
* Solve for e(i+2) and d(i+3).
*
EIR = REAL( E( I+2 ) )
EII = AIMAG( E( I+2 ) )
F = EIR / D( I+2 )
G = EII / D( I+2 )
E( I+2 ) = CMPLX( F, G )
D( I+3 ) = D( I+3 ) - F*EIR - G*EII
*
IF( D( I+3 ).LE.ZERO ) THEN
INFO = I+3
GO TO 20
END IF
*
* Solve for e(i+3) and d(i+4).
*
EIR = REAL( E( I+3 ) )
EII = AIMAG( E( I+3 ) )
F = EIR / D( I+3 )
G = EII / D( I+3 )
E( I+3 ) = CMPLX( F, G )
D( I+4 ) = D( I+4 ) - F*EIR - G*EII
110 CONTINUE
*
* Check d(n) for positive definiteness.
*
IF( D( N ).LE.ZERO )
$ INFO = N
*
20 CONTINUE
RETURN
*
* End of CPTTRF
*
END
|