1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
*> \brief \b CPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CPTTS2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cptts2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cptts2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cptts2.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CPTTS2( IUPLO, N, NRHS, D, E, B, LDB )
*
* .. Scalar Arguments ..
* INTEGER IUPLO, LDB, N, NRHS
* ..
* .. Array Arguments ..
* REAL D( * )
* COMPLEX B( LDB, * ), E( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CPTTS2 solves a tridiagonal system of the form
*> A * X = B
*> using the factorization A = U**H*D*U or A = L*D*L**H computed by CPTTRF.
*> D is a diagonal matrix specified in the vector D, U (or L) is a unit
*> bidiagonal matrix whose superdiagonal (subdiagonal) is specified in
*> the vector E, and X and B are N by NRHS matrices.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] IUPLO
*> \verbatim
*> IUPLO is INTEGER
*> Specifies the form of the factorization and whether the
*> vector E is the superdiagonal of the upper bidiagonal factor
*> U or the subdiagonal of the lower bidiagonal factor L.
*> = 1: A = U**H *D*U, E is the superdiagonal of U
*> = 0: A = L*D*L**H, E is the subdiagonal of L
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the tridiagonal matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrix B. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is REAL array, dimension (N)
*> The n diagonal elements of the diagonal matrix D from the
*> factorization A = U**H *D*U or A = L*D*L**H.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is COMPLEX array, dimension (N-1)
*> If IUPLO = 1, the (n-1) superdiagonal elements of the unit
*> bidiagonal factor U from the factorization A = U**H*D*U.
*> If IUPLO = 0, the (n-1) subdiagonal elements of the unit
*> bidiagonal factor L from the factorization A = L*D*L**H.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB,NRHS)
*> On entry, the right hand side vectors B for the system of
*> linear equations.
*> On exit, the solution vectors, X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2016
*
*> \ingroup complexPTcomputational
*
* =====================================================================
SUBROUTINE CPTTS2( IUPLO, N, NRHS, D, E, B, LDB )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* June 2016
*
* .. Scalar Arguments ..
INTEGER IUPLO, LDB, N, NRHS
* ..
* .. Array Arguments ..
REAL D( * )
COMPLEX B( LDB, * ), E( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, J
* ..
* .. External Subroutines ..
EXTERNAL CSSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.1 ) THEN
IF( N.EQ.1 )
$ CALL CSSCAL( NRHS, 1. / D( 1 ), B, LDB )
RETURN
END IF
*
IF( IUPLO.EQ.1 ) THEN
*
* Solve A * X = B using the factorization A = U**H *D*U,
* overwriting each right hand side vector with its solution.
*
IF( NRHS.LE.2 ) THEN
J = 1
5 CONTINUE
*
* Solve U**H * x = b.
*
DO 10 I = 2, N
B( I, J ) = B( I, J ) - B( I-1, J )*CONJG( E( I-1 ) )
10 CONTINUE
*
* Solve D * U * x = b.
*
DO 20 I = 1, N
B( I, J ) = B( I, J ) / D( I )
20 CONTINUE
DO 30 I = N - 1, 1, -1
B( I, J ) = B( I, J ) - B( I+1, J )*E( I )
30 CONTINUE
IF( J.LT.NRHS ) THEN
J = J + 1
GO TO 5
END IF
ELSE
DO 60 J = 1, NRHS
*
* Solve U**H * x = b.
*
DO 40 I = 2, N
B( I, J ) = B( I, J ) - B( I-1, J )*CONJG( E( I-1 ) )
40 CONTINUE
*
* Solve D * U * x = b.
*
B( N, J ) = B( N, J ) / D( N )
DO 50 I = N - 1, 1, -1
B( I, J ) = B( I, J ) / D( I ) - B( I+1, J )*E( I )
50 CONTINUE
60 CONTINUE
END IF
ELSE
*
* Solve A * X = B using the factorization A = L*D*L**H,
* overwriting each right hand side vector with its solution.
*
IF( NRHS.LE.2 ) THEN
J = 1
65 CONTINUE
*
* Solve L * x = b.
*
DO 70 I = 2, N
B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
70 CONTINUE
*
* Solve D * L**H * x = b.
*
DO 80 I = 1, N
B( I, J ) = B( I, J ) / D( I )
80 CONTINUE
DO 90 I = N - 1, 1, -1
B( I, J ) = B( I, J ) - B( I+1, J )*CONJG( E( I ) )
90 CONTINUE
IF( J.LT.NRHS ) THEN
J = J + 1
GO TO 65
END IF
ELSE
DO 120 J = 1, NRHS
*
* Solve L * x = b.
*
DO 100 I = 2, N
B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
100 CONTINUE
*
* Solve D * L**H * x = b.
*
B( N, J ) = B( N, J ) / D( N )
DO 110 I = N - 1, 1, -1
B( I, J ) = B( I, J ) / D( I ) -
$ B( I+1, J )*CONJG( E( I ) )
110 CONTINUE
120 CONTINUE
END IF
END IF
*
RETURN
*
* End of CPTTS2
*
END
|