1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
|
*> \brief <b> DGEES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DGEES + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgees.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgees.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgees.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI,
* VS, LDVS, WORK, LWORK, BWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER JOBVS, SORT
* INTEGER INFO, LDA, LDVS, LWORK, N, SDIM
* ..
* .. Array Arguments ..
* LOGICAL BWORK( * )
* DOUBLE PRECISION A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
* $ WR( * )
* ..
* .. Function Arguments ..
* LOGICAL SELECT
* EXTERNAL SELECT
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGEES computes for an N-by-N real nonsymmetric matrix A, the
*> eigenvalues, the real Schur form T, and, optionally, the matrix of
*> Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T).
*>
*> Optionally, it also orders the eigenvalues on the diagonal of the
*> real Schur form so that selected eigenvalues are at the top left.
*> The leading columns of Z then form an orthonormal basis for the
*> invariant subspace corresponding to the selected eigenvalues.
*>
*> A matrix is in real Schur form if it is upper quasi-triangular with
*> 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the
*> form
*> [ a b ]
*> [ c a ]
*>
*> where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOBVS
*> \verbatim
*> JOBVS is CHARACTER*1
*> = 'N': Schur vectors are not computed;
*> = 'V': Schur vectors are computed.
*> \endverbatim
*>
*> \param[in] SORT
*> \verbatim
*> SORT is CHARACTER*1
*> Specifies whether or not to order the eigenvalues on the
*> diagonal of the Schur form.
*> = 'N': Eigenvalues are not ordered;
*> = 'S': Eigenvalues are ordered (see SELECT).
*> \endverbatim
*>
*> \param[in] SELECT
*> \verbatim
*> SELECT is a LOGICAL FUNCTION of two DOUBLE PRECISION arguments
*> SELECT must be declared EXTERNAL in the calling subroutine.
*> If SORT = 'S', SELECT is used to select eigenvalues to sort
*> to the top left of the Schur form.
*> If SORT = 'N', SELECT is not referenced.
*> An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
*> SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex
*> conjugate pair of eigenvalues is selected, then both complex
*> eigenvalues are selected.
*> Note that a selected complex eigenvalue may no longer
*> satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
*> ordering may change the value of complex eigenvalues
*> (especially if the eigenvalue is ill-conditioned); in this
*> case INFO is set to N+2 (see INFO below).
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On entry, the N-by-N matrix A.
*> On exit, A has been overwritten by its real Schur form T.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] SDIM
*> \verbatim
*> SDIM is INTEGER
*> If SORT = 'N', SDIM = 0.
*> If SORT = 'S', SDIM = number of eigenvalues (after sorting)
*> for which SELECT is true. (Complex conjugate
*> pairs for which SELECT is true for either
*> eigenvalue count as 2.)
*> \endverbatim
*>
*> \param[out] WR
*> \verbatim
*> WR is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] WI
*> \verbatim
*> WI is DOUBLE PRECISION array, dimension (N)
*> WR and WI contain the real and imaginary parts,
*> respectively, of the computed eigenvalues in the same order
*> that they appear on the diagonal of the output Schur form T.
*> Complex conjugate pairs of eigenvalues will appear
*> consecutively with the eigenvalue having the positive
*> imaginary part first.
*> \endverbatim
*>
*> \param[out] VS
*> \verbatim
*> VS is DOUBLE PRECISION array, dimension (LDVS,N)
*> If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
*> vectors.
*> If JOBVS = 'N', VS is not referenced.
*> \endverbatim
*>
*> \param[in] LDVS
*> \verbatim
*> LDVS is INTEGER
*> The leading dimension of the array VS. LDVS >= 1; if
*> JOBVS = 'V', LDVS >= N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) contains the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,3*N).
*> For good performance, LWORK must generally be larger.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] BWORK
*> \verbatim
*> BWORK is LOGICAL array, dimension (N)
*> Not referenced if SORT = 'N'.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: if INFO = i, and i is
*> <= N: the QR algorithm failed to compute all the
*> eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
*> contain those eigenvalues which have converged; if
*> JOBVS = 'V', VS contains the matrix which reduces A
*> to its partially converged Schur form.
*> = N+1: the eigenvalues could not be reordered because some
*> eigenvalues were too close to separate (the problem
*> is very ill-conditioned);
*> = N+2: after reordering, roundoff changed values of some
*> complex eigenvalues so that leading eigenvalues in
*> the Schur form no longer satisfy SELECT=.TRUE. This
*> could also be caused by underflow due to scaling.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup doubleGEeigen
*
* =====================================================================
SUBROUTINE DGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI,
$ VS, LDVS, WORK, LWORK, BWORK, INFO )
*
* -- LAPACK driver routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
CHARACTER JOBVS, SORT
INTEGER INFO, LDA, LDVS, LWORK, N, SDIM
* ..
* .. Array Arguments ..
LOGICAL BWORK( * )
DOUBLE PRECISION A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
$ WR( * )
* ..
* .. Function Arguments ..
LOGICAL SELECT
EXTERNAL SELECT
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* ..
* .. Local Scalars ..
LOGICAL CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTST,
$ WANTVS
INTEGER HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
$ IHI, ILO, INXT, IP, ITAU, IWRK, MAXWRK, MINWRK
DOUBLE PRECISION ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM
* ..
* .. Local Arrays ..
INTEGER IDUM( 1 )
DOUBLE PRECISION DUM( 1 )
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY,
$ DLABAD, DLASCL, DORGHR, DSWAP, DTRSEN, XERBLA
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, SQRT
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
LQUERY = ( LWORK.EQ.-1 )
WANTVS = LSAME( JOBVS, 'V' )
WANTST = LSAME( SORT, 'S' )
IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
INFO = -1
ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
INFO = -11
END IF
*
* Compute workspace
* (Note: Comments in the code beginning "Workspace:" describe the
* minimal amount of workspace needed at that point in the code,
* as well as the preferred amount for good performance.
* NB refers to the optimal block size for the immediately
* following subroutine, as returned by ILAENV.
* HSWORK refers to the workspace preferred by DHSEQR, as
* calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
* the worst case.)
*
IF( INFO.EQ.0 ) THEN
IF( N.EQ.0 ) THEN
MINWRK = 1
MAXWRK = 1
ELSE
MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
MINWRK = 3*N
*
CALL DHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
$ WORK, -1, IEVAL )
HSWORK = WORK( 1 )
*
IF( .NOT.WANTVS ) THEN
MAXWRK = MAX( MAXWRK, N + HSWORK )
ELSE
MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
$ 'DORGHR', ' ', N, 1, N, -1 ) )
MAXWRK = MAX( MAXWRK, N + HSWORK )
END IF
END IF
WORK( 1 ) = MAXWRK
*
IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
INFO = -13
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGEES ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 ) THEN
SDIM = 0
RETURN
END IF
*
* Get machine constants
*
EPS = DLAMCH( 'P' )
SMLNUM = DLAMCH( 'S' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
SMLNUM = SQRT( SMLNUM ) / EPS
BIGNUM = ONE / SMLNUM
*
* Scale A if max element outside range [SMLNUM,BIGNUM]
*
ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
SCALEA = .FALSE.
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
SCALEA = .TRUE.
CSCALE = SMLNUM
ELSE IF( ANRM.GT.BIGNUM ) THEN
SCALEA = .TRUE.
CSCALE = BIGNUM
END IF
IF( SCALEA )
$ CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
*
* Permute the matrix to make it more nearly triangular
* (Workspace: need N)
*
IBAL = 1
CALL DGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
*
* Reduce to upper Hessenberg form
* (Workspace: need 3*N, prefer 2*N+N*NB)
*
ITAU = N + IBAL
IWRK = N + ITAU
CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
$ LWORK-IWRK+1, IERR )
*
IF( WANTVS ) THEN
*
* Copy Householder vectors to VS
*
CALL DLACPY( 'L', N, N, A, LDA, VS, LDVS )
*
* Generate orthogonal matrix in VS
* (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
*
CALL DORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
$ LWORK-IWRK+1, IERR )
END IF
*
SDIM = 0
*
* Perform QR iteration, accumulating Schur vectors in VS if desired
* (Workspace: need N+1, prefer N+HSWORK (see comments) )
*
IWRK = ITAU
CALL DHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
$ WORK( IWRK ), LWORK-IWRK+1, IEVAL )
IF( IEVAL.GT.0 )
$ INFO = IEVAL
*
* Sort eigenvalues if desired
*
IF( WANTST .AND. INFO.EQ.0 ) THEN
IF( SCALEA ) THEN
CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
END IF
DO 10 I = 1, N
BWORK( I ) = SELECT( WR( I ), WI( I ) )
10 CONTINUE
*
* Reorder eigenvalues and transform Schur vectors
* (Workspace: none needed)
*
CALL DTRSEN( 'N', JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
$ SDIM, S, SEP, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
$ ICOND )
IF( ICOND.GT.0 )
$ INFO = N + ICOND
END IF
*
IF( WANTVS ) THEN
*
* Undo balancing
* (Workspace: need N)
*
CALL DGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
$ IERR )
END IF
*
IF( SCALEA ) THEN
*
* Undo scaling for the Schur form of A
*
CALL DLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
CALL DCOPY( N, A, LDA+1, WR, 1 )
IF( CSCALE.EQ.SMLNUM ) THEN
*
* If scaling back towards underflow, adjust WI if an
* offdiagonal element of a 2-by-2 block in the Schur form
* underflows.
*
IF( IEVAL.GT.0 ) THEN
I1 = IEVAL + 1
I2 = IHI - 1
CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI,
$ MAX( ILO-1, 1 ), IERR )
ELSE IF( WANTST ) THEN
I1 = 1
I2 = N - 1
ELSE
I1 = ILO
I2 = IHI - 1
END IF
INXT = I1 - 1
DO 20 I = I1, I2
IF( I.LT.INXT )
$ GO TO 20
IF( WI( I ).EQ.ZERO ) THEN
INXT = I + 1
ELSE
IF( A( I+1, I ).EQ.ZERO ) THEN
WI( I ) = ZERO
WI( I+1 ) = ZERO
ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
$ ZERO ) THEN
WI( I ) = ZERO
WI( I+1 ) = ZERO
IF( I.GT.1 )
$ CALL DSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
IF( N.GT.I+1 )
$ CALL DSWAP( N-I-1, A( I, I+2 ), LDA,
$ A( I+1, I+2 ), LDA )
IF( WANTVS ) THEN
CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
END IF
A( I, I+1 ) = A( I+1, I )
A( I+1, I ) = ZERO
END IF
INXT = I + 2
END IF
20 CONTINUE
END IF
*
* Undo scaling for the imaginary part of the eigenvalues
*
CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
$ WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
END IF
*
IF( WANTST .AND. INFO.EQ.0 ) THEN
*
* Check if reordering successful
*
LASTSL = .TRUE.
LST2SL = .TRUE.
SDIM = 0
IP = 0
DO 30 I = 1, N
CURSL = SELECT( WR( I ), WI( I ) )
IF( WI( I ).EQ.ZERO ) THEN
IF( CURSL )
$ SDIM = SDIM + 1
IP = 0
IF( CURSL .AND. .NOT.LASTSL )
$ INFO = N + 2
ELSE
IF( IP.EQ.1 ) THEN
*
* Last eigenvalue of conjugate pair
*
CURSL = CURSL .OR. LASTSL
LASTSL = CURSL
IF( CURSL )
$ SDIM = SDIM + 2
IP = -1
IF( CURSL .AND. .NOT.LST2SL )
$ INFO = N + 2
ELSE
*
* First eigenvalue of conjugate pair
*
IP = 1
END IF
END IF
LST2SL = LASTSL
LASTSL = CURSL
30 CONTINUE
END IF
*
WORK( 1 ) = MAXWRK
RETURN
*
* End of DGEES
*
END
|