1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
*> \brief \b DLAED9 used by sstedc. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is dense.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLAED9 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed9.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed9.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed9.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLAED9( K, KSTART, KSTOP, N, D, Q, LDQ, RHO, DLAMDA, W,
* S, LDS, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, K, KSTART, KSTOP, LDQ, LDS, N
* DOUBLE PRECISION RHO
* ..
* .. Array Arguments ..
* DOUBLE PRECISION D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, * ),
* $ W( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLAED9 finds the roots of the secular equation, as defined by the
*> values in D, Z, and RHO, between KSTART and KSTOP. It makes the
*> appropriate calls to DLAED4 and then stores the new matrix of
*> eigenvectors for use in calculating the next level of Z vectors.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The number of terms in the rational function to be solved by
*> DLAED4. K >= 0.
*> \endverbatim
*>
*> \param[in] KSTART
*> \verbatim
*> KSTART is INTEGER
*> \endverbatim
*>
*> \param[in] KSTOP
*> \verbatim
*> KSTOP is INTEGER
*> The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP
*> are to be computed. 1 <= KSTART <= KSTOP <= K.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns in the Q matrix.
*> N >= K (delation may result in N > K).
*> \endverbatim
*>
*> \param[out] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> D(I) contains the updated eigenvalues
*> for KSTART <= I <= KSTOP.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*> Q is DOUBLE PRECISION array, dimension (LDQ,N)
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> The leading dimension of the array Q. LDQ >= max( 1, N ).
*> \endverbatim
*>
*> \param[in] RHO
*> \verbatim
*> RHO is DOUBLE PRECISION
*> The value of the parameter in the rank one update equation.
*> RHO >= 0 required.
*> \endverbatim
*>
*> \param[in] DLAMDA
*> \verbatim
*> DLAMDA is DOUBLE PRECISION array, dimension (K)
*> The first K elements of this array contain the old roots
*> of the deflated updating problem. These are the poles
*> of the secular equation.
*> \endverbatim
*>
*> \param[in] W
*> \verbatim
*> W is DOUBLE PRECISION array, dimension (K)
*> The first K elements of this array contain the components
*> of the deflation-adjusted updating vector.
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is DOUBLE PRECISION array, dimension (LDS, K)
*> Will contain the eigenvectors of the repaired matrix which
*> will be stored for subsequent Z vector calculation and
*> multiplied by the previously accumulated eigenvectors
*> to update the system.
*> \endverbatim
*>
*> \param[in] LDS
*> \verbatim
*> LDS is INTEGER
*> The leading dimension of S. LDS >= max( 1, K ).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: if INFO = 1, an eigenvalue did not converge
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup auxOTHERcomputational
*
*> \par Contributors:
* ==================
*>
*> Jeff Rutter, Computer Science Division, University of California
*> at Berkeley, USA
*
* =====================================================================
SUBROUTINE DLAED9( K, KSTART, KSTOP, N, D, Q, LDQ, RHO, DLAMDA, W,
$ S, LDS, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER INFO, K, KSTART, KSTOP, LDQ, LDS, N
DOUBLE PRECISION RHO
* ..
* .. Array Arguments ..
DOUBLE PRECISION D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, * ),
$ W( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, J
DOUBLE PRECISION TEMP
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMC3, DNRM2
EXTERNAL DLAMC3, DNRM2
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DLAED4, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, SIGN, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
*
IF( K.LT.0 ) THEN
INFO = -1
ELSE IF( KSTART.LT.1 .OR. KSTART.GT.MAX( 1, K ) ) THEN
INFO = -2
ELSE IF( MAX( 1, KSTOP ).LT.KSTART .OR. KSTOP.GT.MAX( 1, K ) )
$ THEN
INFO = -3
ELSE IF( N.LT.K ) THEN
INFO = -4
ELSE IF( LDQ.LT.MAX( 1, K ) ) THEN
INFO = -7
ELSE IF( LDS.LT.MAX( 1, K ) ) THEN
INFO = -12
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DLAED9', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( K.EQ.0 )
$ RETURN
*
* Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
* be computed with high relative accuracy (barring over/underflow).
* This is a problem on machines without a guard digit in
* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
* The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
* which on any of these machines zeros out the bottommost
* bit of DLAMDA(I) if it is 1; this makes the subsequent
* subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
* occurs. On binary machines with a guard digit (almost all
* machines) it does not change DLAMDA(I) at all. On hexadecimal
* and decimal machines with a guard digit, it slightly
* changes the bottommost bits of DLAMDA(I). It does not account
* for hexadecimal or decimal machines without guard digits
* (we know of none). We use a subroutine call to compute
* 2*DLAMBDA(I) to prevent optimizing compilers from eliminating
* this code.
*
DO 10 I = 1, N
DLAMDA( I ) = DLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )
10 CONTINUE
*
DO 20 J = KSTART, KSTOP
CALL DLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )
*
* If the zero finder fails, the computation is terminated.
*
IF( INFO.NE.0 )
$ GO TO 120
20 CONTINUE
*
IF( K.EQ.1 .OR. K.EQ.2 ) THEN
DO 40 I = 1, K
DO 30 J = 1, K
S( J, I ) = Q( J, I )
30 CONTINUE
40 CONTINUE
GO TO 120
END IF
*
* Compute updated W.
*
CALL DCOPY( K, W, 1, S, 1 )
*
* Initialize W(I) = Q(I,I)
*
CALL DCOPY( K, Q, LDQ+1, W, 1 )
DO 70 J = 1, K
DO 50 I = 1, J - 1
W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
50 CONTINUE
DO 60 I = J + 1, K
W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
60 CONTINUE
70 CONTINUE
DO 80 I = 1, K
W( I ) = SIGN( SQRT( -W( I ) ), S( I, 1 ) )
80 CONTINUE
*
* Compute eigenvectors of the modified rank-1 modification.
*
DO 110 J = 1, K
DO 90 I = 1, K
Q( I, J ) = W( I ) / Q( I, J )
90 CONTINUE
TEMP = DNRM2( K, Q( 1, J ), 1 )
DO 100 I = 1, K
S( I, J ) = Q( I, J ) / TEMP
100 CONTINUE
110 CONTINUE
*
120 CONTINUE
RETURN
*
* End of DLAED9
*
END
|