1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
*> \brief \b DLAPMR rearranges rows of a matrix as specified by a permutation vector.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLAPMR + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlapmr.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlapmr.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlapmr.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLAPMR( FORWRD, M, N, X, LDX, K )
*
* .. Scalar Arguments ..
* LOGICAL FORWRD
* INTEGER LDX, M, N
* ..
* .. Array Arguments ..
* INTEGER K( * )
* DOUBLE PRECISION X( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLAPMR rearranges the rows of the M by N matrix X as specified
*> by the permutation K(1),K(2),...,K(M) of the integers 1,...,M.
*> If FORWRD = .TRUE., forward permutation:
*>
*> X(K(I),*) is moved X(I,*) for I = 1,2,...,M.
*>
*> If FORWRD = .FALSE., backward permutation:
*>
*> X(I,*) is moved to X(K(I),*) for I = 1,2,...,M.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] FORWRD
*> \verbatim
*> FORWRD is LOGICAL
*> = .TRUE., forward permutation
*> = .FALSE., backward permutation
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix X. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix X. N >= 0.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is DOUBLE PRECISION array, dimension (LDX,N)
*> On entry, the M by N matrix X.
*> On exit, X contains the permuted matrix X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X, LDX >= MAX(1,M).
*> \endverbatim
*>
*> \param[in,out] K
*> \verbatim
*> K is INTEGER array, dimension (M)
*> On entry, K contains the permutation vector. K is used as
*> internal workspace, but reset to its original value on
*> output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup doubleOTHERauxiliary
*
* =====================================================================
SUBROUTINE DLAPMR( FORWRD, M, N, X, LDX, K )
*
* -- LAPACK auxiliary routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
LOGICAL FORWRD
INTEGER LDX, M, N
* ..
* .. Array Arguments ..
INTEGER K( * )
DOUBLE PRECISION X( LDX, * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, IN, J, JJ
DOUBLE PRECISION TEMP
* ..
* .. Executable Statements ..
*
IF( M.LE.1 )
$ RETURN
*
DO 10 I = 1, M
K( I ) = -K( I )
10 CONTINUE
*
IF( FORWRD ) THEN
*
* Forward permutation
*
DO 50 I = 1, M
*
IF( K( I ).GT.0 )
$ GO TO 40
*
J = I
K( J ) = -K( J )
IN = K( J )
*
20 CONTINUE
IF( K( IN ).GT.0 )
$ GO TO 40
*
DO 30 JJ = 1, N
TEMP = X( J, JJ )
X( J, JJ ) = X( IN, JJ )
X( IN, JJ ) = TEMP
30 CONTINUE
*
K( IN ) = -K( IN )
J = IN
IN = K( IN )
GO TO 20
*
40 CONTINUE
*
50 CONTINUE
*
ELSE
*
* Backward permutation
*
DO 90 I = 1, M
*
IF( K( I ).GT.0 )
$ GO TO 80
*
K( I ) = -K( I )
J = K( I )
60 CONTINUE
IF( J.EQ.I )
$ GO TO 80
*
DO 70 JJ = 1, N
TEMP = X( I, JJ )
X( I, JJ ) = X( J, JJ )
X( J, JJ ) = TEMP
70 CONTINUE
*
K( J ) = -K( J )
J = K( J )
GO TO 60
*
80 CONTINUE
*
90 CONTINUE
*
END IF
*
RETURN
*
* End of ZLAPMT
*
END
|