1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
*> \brief \b DLARF applies an elementary reflector to a general rectangular matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLARF + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarf.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarf.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarf.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
*
* .. Scalar Arguments ..
* CHARACTER SIDE
* INTEGER INCV, LDC, M, N
* DOUBLE PRECISION TAU
* ..
* .. Array Arguments ..
* DOUBLE PRECISION C( LDC, * ), V( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLARF applies a real elementary reflector H to a real m by n matrix
*> C, from either the left or the right. H is represented in the form
*>
*> H = I - tau * v * v**T
*>
*> where tau is a real scalar and v is a real vector.
*>
*> If tau = 0, then H is taken to be the unit matrix.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> = 'L': form H * C
*> = 'R': form C * H
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix C.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix C.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*> V is DOUBLE PRECISION array, dimension
*> (1 + (M-1)*abs(INCV)) if SIDE = 'L'
*> or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
*> The vector v in the representation of H. V is not used if
*> TAU = 0.
*> \endverbatim
*>
*> \param[in] INCV
*> \verbatim
*> INCV is INTEGER
*> The increment between elements of v. INCV <> 0.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is DOUBLE PRECISION
*> The value tau in the representation of H.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is DOUBLE PRECISION array, dimension (LDC,N)
*> On entry, the m by n matrix C.
*> On exit, C is overwritten by the matrix H * C if SIDE = 'L',
*> or C * H if SIDE = 'R'.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension
*> (N) if SIDE = 'L'
*> or (M) if SIDE = 'R'
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup doubleOTHERauxiliary
*
* =====================================================================
SUBROUTINE DLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
*
* -- LAPACK auxiliary routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
CHARACTER SIDE
INTEGER INCV, LDC, M, N
DOUBLE PRECISION TAU
* ..
* .. Array Arguments ..
DOUBLE PRECISION C( LDC, * ), V( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL APPLYLEFT
INTEGER I, LASTV, LASTC
* ..
* .. External Subroutines ..
EXTERNAL DGEMV, DGER
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILADLR, ILADLC
EXTERNAL LSAME, ILADLR, ILADLC
* ..
* .. Executable Statements ..
*
APPLYLEFT = LSAME( SIDE, 'L' )
LASTV = 0
LASTC = 0
IF( TAU.NE.ZERO ) THEN
! Set up variables for scanning V. LASTV begins pointing to the end
! of V.
IF( APPLYLEFT ) THEN
LASTV = M
ELSE
LASTV = N
END IF
IF( INCV.GT.0 ) THEN
I = 1 + (LASTV-1) * INCV
ELSE
I = 1
END IF
! Look for the last non-zero row in V.
DO WHILE( LASTV.GT.0 .AND. V( I ).EQ.ZERO )
LASTV = LASTV - 1
I = I - INCV
END DO
IF( APPLYLEFT ) THEN
! Scan for the last non-zero column in C(1:lastv,:).
LASTC = ILADLC(LASTV, N, C, LDC)
ELSE
! Scan for the last non-zero row in C(:,1:lastv).
LASTC = ILADLR(M, LASTV, C, LDC)
END IF
END IF
! Note that lastc.eq.0 renders the BLAS operations null; no special
! case is needed at this level.
IF( APPLYLEFT ) THEN
*
* Form H * C
*
IF( LASTV.GT.0 ) THEN
*
* w(1:lastc,1) := C(1:lastv,1:lastc)**T * v(1:lastv,1)
*
CALL DGEMV( 'Transpose', LASTV, LASTC, ONE, C, LDC, V, INCV,
$ ZERO, WORK, 1 )
*
* C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)**T
*
CALL DGER( LASTV, LASTC, -TAU, V, INCV, WORK, 1, C, LDC )
END IF
ELSE
*
* Form C * H
*
IF( LASTV.GT.0 ) THEN
*
* w(1:lastc,1) := C(1:lastc,1:lastv) * v(1:lastv,1)
*
CALL DGEMV( 'No transpose', LASTC, LASTV, ONE, C, LDC,
$ V, INCV, ZERO, WORK, 1 )
*
* C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)**T
*
CALL DGER( LASTC, LASTV, -TAU, WORK, 1, V, INCV, C, LDC )
END IF
END IF
RETURN
*
* End of DLARF
*
END
|