1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
*> \brief \b DLARRB provides limited bisection to locate eigenvalues for more accuracy.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLARRB + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrb.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrb.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrb.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLARRB( N, D, LLD, IFIRST, ILAST, RTOL1,
* RTOL2, OFFSET, W, WGAP, WERR, WORK, IWORK,
* PIVMIN, SPDIAM, TWIST, INFO )
*
* .. Scalar Arguments ..
* INTEGER IFIRST, ILAST, INFO, N, OFFSET, TWIST
* DOUBLE PRECISION PIVMIN, RTOL1, RTOL2, SPDIAM
* ..
* .. Array Arguments ..
* INTEGER IWORK( * )
* DOUBLE PRECISION D( * ), LLD( * ), W( * ),
* $ WERR( * ), WGAP( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Given the relatively robust representation(RRR) L D L^T, DLARRB
*> does "limited" bisection to refine the eigenvalues of L D L^T,
*> W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial
*> guesses for these eigenvalues are input in W, the corresponding estimate
*> of the error in these guesses and their gaps are input in WERR
*> and WGAP, respectively. During bisection, intervals
*> [left, right] are maintained by storing their mid-points and
*> semi-widths in the arrays W and WERR respectively.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> The N diagonal elements of the diagonal matrix D.
*> \endverbatim
*>
*> \param[in] LLD
*> \verbatim
*> LLD is DOUBLE PRECISION array, dimension (N-1)
*> The (N-1) elements L(i)*L(i)*D(i).
*> \endverbatim
*>
*> \param[in] IFIRST
*> \verbatim
*> IFIRST is INTEGER
*> The index of the first eigenvalue to be computed.
*> \endverbatim
*>
*> \param[in] ILAST
*> \verbatim
*> ILAST is INTEGER
*> The index of the last eigenvalue to be computed.
*> \endverbatim
*>
*> \param[in] RTOL1
*> \verbatim
*> RTOL1 is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in] RTOL2
*> \verbatim
*> RTOL2 is DOUBLE PRECISION
*> Tolerance for the convergence of the bisection intervals.
*> An interval [LEFT,RIGHT] has converged if
*> RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
*> where GAP is the (estimated) distance to the nearest
*> eigenvalue.
*> \endverbatim
*>
*> \param[in] OFFSET
*> \verbatim
*> OFFSET is INTEGER
*> Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFSET
*> through ILAST-OFFSET elements of these arrays are to be used.
*> \endverbatim
*>
*> \param[in,out] W
*> \verbatim
*> W is DOUBLE PRECISION array, dimension (N)
*> On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
*> estimates of the eigenvalues of L D L^T indexed IFIRST through
*> ILAST.
*> On output, these estimates are refined.
*> \endverbatim
*>
*> \param[in,out] WGAP
*> \verbatim
*> WGAP is DOUBLE PRECISION array, dimension (N-1)
*> On input, the (estimated) gaps between consecutive
*> eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap between
*> eigenvalues I and I+1. Note that if IFIRST = ILAST
*> then WGAP(IFIRST-OFFSET) must be set to ZERO.
*> On output, these gaps are refined.
*> \endverbatim
*>
*> \param[in,out] WERR
*> \verbatim
*> WERR is DOUBLE PRECISION array, dimension (N)
*> On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are
*> the errors in the estimates of the corresponding elements in W.
*> On output, these errors are refined.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (2*N)
*> Workspace.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (2*N)
*> Workspace.
*> \endverbatim
*>
*> \param[in] PIVMIN
*> \verbatim
*> PIVMIN is DOUBLE PRECISION
*> The minimum pivot in the Sturm sequence.
*> \endverbatim
*>
*> \param[in] SPDIAM
*> \verbatim
*> SPDIAM is DOUBLE PRECISION
*> The spectral diameter of the matrix.
*> \endverbatim
*>
*> \param[in] TWIST
*> \verbatim
*> TWIST is INTEGER
*> The twist index for the twisted factorization that is used
*> for the negcount.
*> TWIST = N: Compute negcount from L D L^T - LAMBDA I = L+ D+ L+^T
*> TWIST = 1: Compute negcount from L D L^T - LAMBDA I = U- D- U-^T
*> TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(r) N(r)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> Error flag.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2017
*
*> \ingroup OTHERauxiliary
*
*> \par Contributors:
* ==================
*>
*> Beresford Parlett, University of California, Berkeley, USA \n
*> Jim Demmel, University of California, Berkeley, USA \n
*> Inderjit Dhillon, University of Texas, Austin, USA \n
*> Osni Marques, LBNL/NERSC, USA \n
*> Christof Voemel, University of California, Berkeley, USA
*
* =====================================================================
SUBROUTINE DLARRB( N, D, LLD, IFIRST, ILAST, RTOL1,
$ RTOL2, OFFSET, W, WGAP, WERR, WORK, IWORK,
$ PIVMIN, SPDIAM, TWIST, INFO )
*
* -- LAPACK auxiliary routine (version 3.7.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* June 2017
*
* .. Scalar Arguments ..
INTEGER IFIRST, ILAST, INFO, N, OFFSET, TWIST
DOUBLE PRECISION PIVMIN, RTOL1, RTOL2, SPDIAM
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION D( * ), LLD( * ), W( * ),
$ WERR( * ), WGAP( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, TWO, HALF
PARAMETER ( ZERO = 0.0D0, TWO = 2.0D0,
$ HALF = 0.5D0 )
INTEGER MAXITR
* ..
* .. Local Scalars ..
INTEGER I, I1, II, IP, ITER, K, NEGCNT, NEXT, NINT,
$ OLNINT, PREV, R
DOUBLE PRECISION BACK, CVRGD, GAP, LEFT, LGAP, MID, MNWDTH,
$ RGAP, RIGHT, TMP, WIDTH
* ..
* .. External Functions ..
INTEGER DLANEG
EXTERNAL DLANEG
*
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Executable Statements ..
*
INFO = 0
*
* Quick return if possible
*
IF( N.LE.0 ) THEN
RETURN
END IF
*
MAXITR = INT( ( LOG( SPDIAM+PIVMIN )-LOG( PIVMIN ) ) /
$ LOG( TWO ) ) + 2
MNWDTH = TWO * PIVMIN
*
R = TWIST
IF((R.LT.1).OR.(R.GT.N)) R = N
*
* Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ].
* The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while
* Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 )
* for an unconverged interval is set to the index of the next unconverged
* interval, and is -1 or 0 for a converged interval. Thus a linked
* list of unconverged intervals is set up.
*
I1 = IFIRST
* The number of unconverged intervals
NINT = 0
* The last unconverged interval found
PREV = 0
RGAP = WGAP( I1-OFFSET )
DO 75 I = I1, ILAST
K = 2*I
II = I - OFFSET
LEFT = W( II ) - WERR( II )
RIGHT = W( II ) + WERR( II )
LGAP = RGAP
RGAP = WGAP( II )
GAP = MIN( LGAP, RGAP )
* Make sure that [LEFT,RIGHT] contains the desired eigenvalue
* Compute negcount from dstqds facto L+D+L+^T = L D L^T - LEFT
*
* Do while( NEGCNT(LEFT).GT.I-1 )
*
BACK = WERR( II )
20 CONTINUE
NEGCNT = DLANEG( N, D, LLD, LEFT, PIVMIN, R )
IF( NEGCNT.GT.I-1 ) THEN
LEFT = LEFT - BACK
BACK = TWO*BACK
GO TO 20
END IF
*
* Do while( NEGCNT(RIGHT).LT.I )
* Compute negcount from dstqds facto L+D+L+^T = L D L^T - RIGHT
*
BACK = WERR( II )
50 CONTINUE
NEGCNT = DLANEG( N, D, LLD, RIGHT, PIVMIN, R )
IF( NEGCNT.LT.I ) THEN
RIGHT = RIGHT + BACK
BACK = TWO*BACK
GO TO 50
END IF
WIDTH = HALF*ABS( LEFT - RIGHT )
TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
CVRGD = MAX(RTOL1*GAP,RTOL2*TMP)
IF( WIDTH.LE.CVRGD .OR. WIDTH.LE.MNWDTH ) THEN
* This interval has already converged and does not need refinement.
* (Note that the gaps might change through refining the
* eigenvalues, however, they can only get bigger.)
* Remove it from the list.
IWORK( K-1 ) = -1
* Make sure that I1 always points to the first unconverged interval
IF((I.EQ.I1).AND.(I.LT.ILAST)) I1 = I + 1
IF((PREV.GE.I1).AND.(I.LE.ILAST)) IWORK( 2*PREV-1 ) = I + 1
ELSE
* unconverged interval found
PREV = I
NINT = NINT + 1
IWORK( K-1 ) = I + 1
IWORK( K ) = NEGCNT
END IF
WORK( K-1 ) = LEFT
WORK( K ) = RIGHT
75 CONTINUE
*
* Do while( NINT.GT.0 ), i.e. there are still unconverged intervals
* and while (ITER.LT.MAXITR)
*
ITER = 0
80 CONTINUE
PREV = I1 - 1
I = I1
OLNINT = NINT
DO 100 IP = 1, OLNINT
K = 2*I
II = I - OFFSET
RGAP = WGAP( II )
LGAP = RGAP
IF(II.GT.1) LGAP = WGAP( II-1 )
GAP = MIN( LGAP, RGAP )
NEXT = IWORK( K-1 )
LEFT = WORK( K-1 )
RIGHT = WORK( K )
MID = HALF*( LEFT + RIGHT )
* semiwidth of interval
WIDTH = RIGHT - MID
TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
CVRGD = MAX(RTOL1*GAP,RTOL2*TMP)
IF( ( WIDTH.LE.CVRGD ) .OR. ( WIDTH.LE.MNWDTH ).OR.
$ ( ITER.EQ.MAXITR ) )THEN
* reduce number of unconverged intervals
NINT = NINT - 1
* Mark interval as converged.
IWORK( K-1 ) = 0
IF( I1.EQ.I ) THEN
I1 = NEXT
ELSE
* Prev holds the last unconverged interval previously examined
IF(PREV.GE.I1) IWORK( 2*PREV-1 ) = NEXT
END IF
I = NEXT
GO TO 100
END IF
PREV = I
*
* Perform one bisection step
*
NEGCNT = DLANEG( N, D, LLD, MID, PIVMIN, R )
IF( NEGCNT.LE.I-1 ) THEN
WORK( K-1 ) = MID
ELSE
WORK( K ) = MID
END IF
I = NEXT
100 CONTINUE
ITER = ITER + 1
* do another loop if there are still unconverged intervals
* However, in the last iteration, all intervals are accepted
* since this is the best we can do.
IF( ( NINT.GT.0 ).AND.(ITER.LE.MAXITR) ) GO TO 80
*
*
* At this point, all the intervals have converged
DO 110 I = IFIRST, ILAST
K = 2*I
II = I - OFFSET
* All intervals marked by '0' have been refined.
IF( IWORK( K-1 ).EQ.0 ) THEN
W( II ) = HALF*( WORK( K-1 )+WORK( K ) )
WERR( II ) = WORK( K ) - W( II )
END IF
110 CONTINUE
*
DO 111 I = IFIRST+1, ILAST
K = 2*I
II = I - OFFSET
WGAP( II-1 ) = MAX( ZERO,
$ W(II) - WERR (II) - W( II-1 ) - WERR( II-1 ))
111 CONTINUE
RETURN
*
* End of DLARRB
*
END
|