1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
*> \brief \b DLARRJ performs refinement of the initial estimates of the eigenvalues of the matrix T.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLARRJ + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrj.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrj.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrj.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLARRJ( N, D, E2, IFIRST, ILAST,
* RTOL, OFFSET, W, WERR, WORK, IWORK,
* PIVMIN, SPDIAM, INFO )
*
* .. Scalar Arguments ..
* INTEGER IFIRST, ILAST, INFO, N, OFFSET
* DOUBLE PRECISION PIVMIN, RTOL, SPDIAM
* ..
* .. Array Arguments ..
* INTEGER IWORK( * )
* DOUBLE PRECISION D( * ), E2( * ), W( * ),
* $ WERR( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Given the initial eigenvalue approximations of T, DLARRJ
*> does bisection to refine the eigenvalues of T,
*> W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial
*> guesses for these eigenvalues are input in W, the corresponding estimate
*> of the error in these guesses in WERR. During bisection, intervals
*> [left, right] are maintained by storing their mid-points and
*> semi-widths in the arrays W and WERR respectively.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> The N diagonal elements of T.
*> \endverbatim
*>
*> \param[in] E2
*> \verbatim
*> E2 is DOUBLE PRECISION array, dimension (N-1)
*> The Squares of the (N-1) subdiagonal elements of T.
*> \endverbatim
*>
*> \param[in] IFIRST
*> \verbatim
*> IFIRST is INTEGER
*> The index of the first eigenvalue to be computed.
*> \endverbatim
*>
*> \param[in] ILAST
*> \verbatim
*> ILAST is INTEGER
*> The index of the last eigenvalue to be computed.
*> \endverbatim
*>
*> \param[in] RTOL
*> \verbatim
*> RTOL is DOUBLE PRECISION
*> Tolerance for the convergence of the bisection intervals.
*> An interval [LEFT,RIGHT] has converged if
*> RIGHT-LEFT < RTOL*MAX(|LEFT|,|RIGHT|).
*> \endverbatim
*>
*> \param[in] OFFSET
*> \verbatim
*> OFFSET is INTEGER
*> Offset for the arrays W and WERR, i.e., the IFIRST-OFFSET
*> through ILAST-OFFSET elements of these arrays are to be used.
*> \endverbatim
*>
*> \param[in,out] W
*> \verbatim
*> W is DOUBLE PRECISION array, dimension (N)
*> On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
*> estimates of the eigenvalues of L D L^T indexed IFIRST through
*> ILAST.
*> On output, these estimates are refined.
*> \endverbatim
*>
*> \param[in,out] WERR
*> \verbatim
*> WERR is DOUBLE PRECISION array, dimension (N)
*> On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are
*> the errors in the estimates of the corresponding elements in W.
*> On output, these errors are refined.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (2*N)
*> Workspace.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (2*N)
*> Workspace.
*> \endverbatim
*>
*> \param[in] PIVMIN
*> \verbatim
*> PIVMIN is DOUBLE PRECISION
*> The minimum pivot in the Sturm sequence for T.
*> \endverbatim
*>
*> \param[in] SPDIAM
*> \verbatim
*> SPDIAM is DOUBLE PRECISION
*> The spectral diameter of T.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> Error flag.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2017
*
*> \ingroup OTHERauxiliary
*
*> \par Contributors:
* ==================
*>
*> Beresford Parlett, University of California, Berkeley, USA \n
*> Jim Demmel, University of California, Berkeley, USA \n
*> Inderjit Dhillon, University of Texas, Austin, USA \n
*> Osni Marques, LBNL/NERSC, USA \n
*> Christof Voemel, University of California, Berkeley, USA
*
* =====================================================================
SUBROUTINE DLARRJ( N, D, E2, IFIRST, ILAST,
$ RTOL, OFFSET, W, WERR, WORK, IWORK,
$ PIVMIN, SPDIAM, INFO )
*
* -- LAPACK auxiliary routine (version 3.7.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* June 2017
*
* .. Scalar Arguments ..
INTEGER IFIRST, ILAST, INFO, N, OFFSET
DOUBLE PRECISION PIVMIN, RTOL, SPDIAM
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION D( * ), E2( * ), W( * ),
$ WERR( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, HALF
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ HALF = 0.5D0 )
INTEGER MAXITR
* ..
* .. Local Scalars ..
INTEGER CNT, I, I1, I2, II, ITER, J, K, NEXT, NINT,
$ OLNINT, P, PREV, SAVI1
DOUBLE PRECISION DPLUS, FAC, LEFT, MID, RIGHT, S, TMP, WIDTH
*
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. Executable Statements ..
*
INFO = 0
*
* Quick return if possible
*
IF( N.LE.0 ) THEN
RETURN
END IF
*
MAXITR = INT( ( LOG( SPDIAM+PIVMIN )-LOG( PIVMIN ) ) /
$ LOG( TWO ) ) + 2
*
* Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ].
* The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while
* Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 )
* for an unconverged interval is set to the index of the next unconverged
* interval, and is -1 or 0 for a converged interval. Thus a linked
* list of unconverged intervals is set up.
*
I1 = IFIRST
I2 = ILAST
* The number of unconverged intervals
NINT = 0
* The last unconverged interval found
PREV = 0
DO 75 I = I1, I2
K = 2*I
II = I - OFFSET
LEFT = W( II ) - WERR( II )
MID = W(II)
RIGHT = W( II ) + WERR( II )
WIDTH = RIGHT - MID
TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
* The following test prevents the test of converged intervals
IF( WIDTH.LT.RTOL*TMP ) THEN
* This interval has already converged and does not need refinement.
* (Note that the gaps might change through refining the
* eigenvalues, however, they can only get bigger.)
* Remove it from the list.
IWORK( K-1 ) = -1
* Make sure that I1 always points to the first unconverged interval
IF((I.EQ.I1).AND.(I.LT.I2)) I1 = I + 1
IF((PREV.GE.I1).AND.(I.LE.I2)) IWORK( 2*PREV-1 ) = I + 1
ELSE
* unconverged interval found
PREV = I
* Make sure that [LEFT,RIGHT] contains the desired eigenvalue
*
* Do while( CNT(LEFT).GT.I-1 )
*
FAC = ONE
20 CONTINUE
CNT = 0
S = LEFT
DPLUS = D( 1 ) - S
IF( DPLUS.LT.ZERO ) CNT = CNT + 1
DO 30 J = 2, N
DPLUS = D( J ) - S - E2( J-1 )/DPLUS
IF( DPLUS.LT.ZERO ) CNT = CNT + 1
30 CONTINUE
IF( CNT.GT.I-1 ) THEN
LEFT = LEFT - WERR( II )*FAC
FAC = TWO*FAC
GO TO 20
END IF
*
* Do while( CNT(RIGHT).LT.I )
*
FAC = ONE
50 CONTINUE
CNT = 0
S = RIGHT
DPLUS = D( 1 ) - S
IF( DPLUS.LT.ZERO ) CNT = CNT + 1
DO 60 J = 2, N
DPLUS = D( J ) - S - E2( J-1 )/DPLUS
IF( DPLUS.LT.ZERO ) CNT = CNT + 1
60 CONTINUE
IF( CNT.LT.I ) THEN
RIGHT = RIGHT + WERR( II )*FAC
FAC = TWO*FAC
GO TO 50
END IF
NINT = NINT + 1
IWORK( K-1 ) = I + 1
IWORK( K ) = CNT
END IF
WORK( K-1 ) = LEFT
WORK( K ) = RIGHT
75 CONTINUE
SAVI1 = I1
*
* Do while( NINT.GT.0 ), i.e. there are still unconverged intervals
* and while (ITER.LT.MAXITR)
*
ITER = 0
80 CONTINUE
PREV = I1 - 1
I = I1
OLNINT = NINT
DO 100 P = 1, OLNINT
K = 2*I
II = I - OFFSET
NEXT = IWORK( K-1 )
LEFT = WORK( K-1 )
RIGHT = WORK( K )
MID = HALF*( LEFT + RIGHT )
* semiwidth of interval
WIDTH = RIGHT - MID
TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
IF( ( WIDTH.LT.RTOL*TMP ) .OR.
$ (ITER.EQ.MAXITR) )THEN
* reduce number of unconverged intervals
NINT = NINT - 1
* Mark interval as converged.
IWORK( K-1 ) = 0
IF( I1.EQ.I ) THEN
I1 = NEXT
ELSE
* Prev holds the last unconverged interval previously examined
IF(PREV.GE.I1) IWORK( 2*PREV-1 ) = NEXT
END IF
I = NEXT
GO TO 100
END IF
PREV = I
*
* Perform one bisection step
*
CNT = 0
S = MID
DPLUS = D( 1 ) - S
IF( DPLUS.LT.ZERO ) CNT = CNT + 1
DO 90 J = 2, N
DPLUS = D( J ) - S - E2( J-1 )/DPLUS
IF( DPLUS.LT.ZERO ) CNT = CNT + 1
90 CONTINUE
IF( CNT.LE.I-1 ) THEN
WORK( K-1 ) = MID
ELSE
WORK( K ) = MID
END IF
I = NEXT
100 CONTINUE
ITER = ITER + 1
* do another loop if there are still unconverged intervals
* However, in the last iteration, all intervals are accepted
* since this is the best we can do.
IF( ( NINT.GT.0 ).AND.(ITER.LE.MAXITR) ) GO TO 80
*
*
* At this point, all the intervals have converged
DO 110 I = SAVI1, ILAST
K = 2*I
II = I - OFFSET
* All intervals marked by '0' have been refined.
IF( IWORK( K-1 ).EQ.0 ) THEN
W( II ) = HALF*( WORK( K-1 )+WORK( K ) )
WERR( II ) = WORK( K ) - W( II )
END IF
110 CONTINUE
*
RETURN
*
* End of DLARRJ
*
END
|