1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
*> \brief \b DLARRK computes one eigenvalue of a symmetric tridiagonal matrix T to suitable accuracy.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLARRK + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrk.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrk.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrk.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLARRK( N, IW, GL, GU,
* D, E2, PIVMIN, RELTOL, W, WERR, INFO)
*
* .. Scalar Arguments ..
* INTEGER INFO, IW, N
* DOUBLE PRECISION PIVMIN, RELTOL, GL, GU, W, WERR
* ..
* .. Array Arguments ..
* DOUBLE PRECISION D( * ), E2( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLARRK computes one eigenvalue of a symmetric tridiagonal
*> matrix T to suitable accuracy. This is an auxiliary code to be
*> called from DSTEMR.
*>
*> To avoid overflow, the matrix must be scaled so that its
*> largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value, and for greatest
*> accuracy, it should not be much smaller than that.
*>
*> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
*> Matrix", Report CS41, Computer Science Dept., Stanford
*> University, July 21, 1966.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the tridiagonal matrix T. N >= 0.
*> \endverbatim
*>
*> \param[in] IW
*> \verbatim
*> IW is INTEGER
*> The index of the eigenvalues to be returned.
*> \endverbatim
*>
*> \param[in] GL
*> \verbatim
*> GL is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in] GU
*> \verbatim
*> GU is DOUBLE PRECISION
*> An upper and a lower bound on the eigenvalue.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> The n diagonal elements of the tridiagonal matrix T.
*> \endverbatim
*>
*> \param[in] E2
*> \verbatim
*> E2 is DOUBLE PRECISION array, dimension (N-1)
*> The (n-1) squared off-diagonal elements of the tridiagonal matrix T.
*> \endverbatim
*>
*> \param[in] PIVMIN
*> \verbatim
*> PIVMIN is DOUBLE PRECISION
*> The minimum pivot allowed in the Sturm sequence for T.
*> \endverbatim
*>
*> \param[in] RELTOL
*> \verbatim
*> RELTOL is DOUBLE PRECISION
*> The minimum relative width of an interval. When an interval
*> is narrower than RELTOL times the larger (in
*> magnitude) endpoint, then it is considered to be
*> sufficiently small, i.e., converged. Note: this should
*> always be at least radix*machine epsilon.
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*> W is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[out] WERR
*> \verbatim
*> WERR is DOUBLE PRECISION
*> The error bound on the corresponding eigenvalue approximation
*> in W.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: Eigenvalue converged
*> = -1: Eigenvalue did NOT converge
*> \endverbatim
*
*> \par Internal Parameters:
* =========================
*>
*> \verbatim
*> FUDGE DOUBLE PRECISION, default = 2
*> A "fudge factor" to widen the Gershgorin intervals.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2017
*
*> \ingroup OTHERauxiliary
*
* =====================================================================
SUBROUTINE DLARRK( N, IW, GL, GU,
$ D, E2, PIVMIN, RELTOL, W, WERR, INFO)
*
* -- LAPACK auxiliary routine (version 3.7.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* June 2017
*
* .. Scalar Arguments ..
INTEGER INFO, IW, N
DOUBLE PRECISION PIVMIN, RELTOL, GL, GU, W, WERR
* ..
* .. Array Arguments ..
DOUBLE PRECISION D( * ), E2( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION FUDGE, HALF, TWO, ZERO
PARAMETER ( HALF = 0.5D0, TWO = 2.0D0,
$ FUDGE = TWO, ZERO = 0.0D0 )
* ..
* .. Local Scalars ..
INTEGER I, IT, ITMAX, NEGCNT
DOUBLE PRECISION ATOLI, EPS, LEFT, MID, RIGHT, RTOLI, TMP1,
$ TMP2, TNORM
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, INT, LOG, MAX
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.0 ) THEN
INFO = 0
RETURN
END IF
*
* Get machine constants
EPS = DLAMCH( 'P' )
TNORM = MAX( ABS( GL ), ABS( GU ) )
RTOLI = RELTOL
ATOLI = FUDGE*TWO*PIVMIN
ITMAX = INT( ( LOG( TNORM+PIVMIN )-LOG( PIVMIN ) ) /
$ LOG( TWO ) ) + 2
INFO = -1
LEFT = GL - FUDGE*TNORM*EPS*N - FUDGE*TWO*PIVMIN
RIGHT = GU + FUDGE*TNORM*EPS*N + FUDGE*TWO*PIVMIN
IT = 0
10 CONTINUE
*
* Check if interval converged or maximum number of iterations reached
*
TMP1 = ABS( RIGHT - LEFT )
TMP2 = MAX( ABS(RIGHT), ABS(LEFT) )
IF( TMP1.LT.MAX( ATOLI, PIVMIN, RTOLI*TMP2 ) ) THEN
INFO = 0
GOTO 30
ENDIF
IF(IT.GT.ITMAX)
$ GOTO 30
*
* Count number of negative pivots for mid-point
*
IT = IT + 1
MID = HALF * (LEFT + RIGHT)
NEGCNT = 0
TMP1 = D( 1 ) - MID
IF( ABS( TMP1 ).LT.PIVMIN )
$ TMP1 = -PIVMIN
IF( TMP1.LE.ZERO )
$ NEGCNT = NEGCNT + 1
*
DO 20 I = 2, N
TMP1 = D( I ) - E2( I-1 ) / TMP1 - MID
IF( ABS( TMP1 ).LT.PIVMIN )
$ TMP1 = -PIVMIN
IF( TMP1.LE.ZERO )
$ NEGCNT = NEGCNT + 1
20 CONTINUE
IF(NEGCNT.GE.IW) THEN
RIGHT = MID
ELSE
LEFT = MID
ENDIF
GOTO 10
30 CONTINUE
*
* Converged or maximum number of iterations reached
*
W = HALF * (LEFT + RIGHT)
WERR = HALF * ABS( RIGHT - LEFT )
RETURN
*
* End of DLARRK
*
END
|