1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
|
*> \brief \b DLASD3 finds all square roots of the roots of the secular equation, as defined by the values in D and Z, and then updates the singular vectors by matrix multiplication. Used by sbdsdc.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLASD3 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd3.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd3.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd3.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
* LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
* INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
* $ SQRE
* ..
* .. Array Arguments ..
* INTEGER CTOT( * ), IDXC( * )
* DOUBLE PRECISION D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
* $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
* $ Z( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLASD3 finds all the square roots of the roots of the secular
*> equation, as defined by the values in D and Z. It makes the
*> appropriate calls to DLASD4 and then updates the singular
*> vectors by matrix multiplication.
*>
*> This code makes very mild assumptions about floating point
*> arithmetic. It will work on machines with a guard digit in
*> add/subtract, or on those binary machines without guard digits
*> which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
*> It could conceivably fail on hexadecimal or decimal machines
*> without guard digits, but we know of none.
*>
*> DLASD3 is called from DLASD1.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NL
*> \verbatim
*> NL is INTEGER
*> The row dimension of the upper block. NL >= 1.
*> \endverbatim
*>
*> \param[in] NR
*> \verbatim
*> NR is INTEGER
*> The row dimension of the lower block. NR >= 1.
*> \endverbatim
*>
*> \param[in] SQRE
*> \verbatim
*> SQRE is INTEGER
*> = 0: the lower block is an NR-by-NR square matrix.
*> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
*>
*> The bidiagonal matrix has N = NL + NR + 1 rows and
*> M = N + SQRE >= N columns.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The size of the secular equation, 1 =< K = < N.
*> \endverbatim
*>
*> \param[out] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension(K)
*> On exit the square roots of the roots of the secular equation,
*> in ascending order.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*> Q is DOUBLE PRECISION array, dimension (LDQ,K)
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> The leading dimension of the array Q. LDQ >= K.
*> \endverbatim
*>
*> \param[in,out] DSIGMA
*> \verbatim
*> DSIGMA is DOUBLE PRECISION array, dimension(K)
*> The first K elements of this array contain the old roots
*> of the deflated updating problem. These are the poles
*> of the secular equation.
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*> U is DOUBLE PRECISION array, dimension (LDU, N)
*> The last N - K columns of this matrix contain the deflated
*> left singular vectors.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> The leading dimension of the array U. LDU >= N.
*> \endverbatim
*>
*> \param[in] U2
*> \verbatim
*> U2 is DOUBLE PRECISION array, dimension (LDU2, N)
*> The first K columns of this matrix contain the non-deflated
*> left singular vectors for the split problem.
*> \endverbatim
*>
*> \param[in] LDU2
*> \verbatim
*> LDU2 is INTEGER
*> The leading dimension of the array U2. LDU2 >= N.
*> \endverbatim
*>
*> \param[out] VT
*> \verbatim
*> VT is DOUBLE PRECISION array, dimension (LDVT, M)
*> The last M - K columns of VT**T contain the deflated
*> right singular vectors.
*> \endverbatim
*>
*> \param[in] LDVT
*> \verbatim
*> LDVT is INTEGER
*> The leading dimension of the array VT. LDVT >= N.
*> \endverbatim
*>
*> \param[in,out] VT2
*> \verbatim
*> VT2 is DOUBLE PRECISION array, dimension (LDVT2, N)
*> The first K columns of VT2**T contain the non-deflated
*> right singular vectors for the split problem.
*> \endverbatim
*>
*> \param[in] LDVT2
*> \verbatim
*> LDVT2 is INTEGER
*> The leading dimension of the array VT2. LDVT2 >= N.
*> \endverbatim
*>
*> \param[in] IDXC
*> \verbatim
*> IDXC is INTEGER array, dimension ( N )
*> The permutation used to arrange the columns of U (and rows of
*> VT) into three groups: the first group contains non-zero
*> entries only at and above (or before) NL +1; the second
*> contains non-zero entries only at and below (or after) NL+2;
*> and the third is dense. The first column of U and the row of
*> VT are treated separately, however.
*>
*> The rows of the singular vectors found by DLASD4
*> must be likewise permuted before the matrix multiplies can
*> take place.
*> \endverbatim
*>
*> \param[in] CTOT
*> \verbatim
*> CTOT is INTEGER array, dimension ( 4 )
*> A count of the total number of the various types of columns
*> in U (or rows in VT), as described in IDXC. The fourth column
*> type is any column which has been deflated.
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*> Z is DOUBLE PRECISION array, dimension (K)
*> The first K elements of this array contain the components
*> of the deflation-adjusted updating row vector.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: if INFO = 1, a singular value did not converge
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2017
*
*> \ingroup OTHERauxiliary
*
*> \par Contributors:
* ==================
*>
*> Ming Gu and Huan Ren, Computer Science Division, University of
*> California at Berkeley, USA
*>
* =====================================================================
SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
$ LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
$ INFO )
*
* -- LAPACK auxiliary routine (version 3.7.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* June 2017
*
* .. Scalar Arguments ..
INTEGER INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
$ SQRE
* ..
* .. Array Arguments ..
INTEGER CTOT( * ), IDXC( * )
DOUBLE PRECISION D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
$ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
$ Z( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO, NEGONE
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0,
$ NEGONE = -1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER CTEMP, I, J, JC, KTEMP, M, N, NLP1, NLP2, NRP1
DOUBLE PRECISION RHO, TEMP
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMC3, DNRM2
EXTERNAL DLAMC3, DNRM2
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DGEMM, DLACPY, DLASCL, DLASD4, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SIGN, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
*
IF( NL.LT.1 ) THEN
INFO = -1
ELSE IF( NR.LT.1 ) THEN
INFO = -2
ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
INFO = -3
END IF
*
N = NL + NR + 1
M = N + SQRE
NLP1 = NL + 1
NLP2 = NL + 2
*
IF( ( K.LT.1 ) .OR. ( K.GT.N ) ) THEN
INFO = -4
ELSE IF( LDQ.LT.K ) THEN
INFO = -7
ELSE IF( LDU.LT.N ) THEN
INFO = -10
ELSE IF( LDU2.LT.N ) THEN
INFO = -12
ELSE IF( LDVT.LT.M ) THEN
INFO = -14
ELSE IF( LDVT2.LT.M ) THEN
INFO = -16
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DLASD3', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( K.EQ.1 ) THEN
D( 1 ) = ABS( Z( 1 ) )
CALL DCOPY( M, VT2( 1, 1 ), LDVT2, VT( 1, 1 ), LDVT )
IF( Z( 1 ).GT.ZERO ) THEN
CALL DCOPY( N, U2( 1, 1 ), 1, U( 1, 1 ), 1 )
ELSE
DO 10 I = 1, N
U( I, 1 ) = -U2( I, 1 )
10 CONTINUE
END IF
RETURN
END IF
*
* Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
* be computed with high relative accuracy (barring over/underflow).
* This is a problem on machines without a guard digit in
* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
* The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
* which on any of these machines zeros out the bottommost
* bit of DSIGMA(I) if it is 1; this makes the subsequent
* subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
* occurs. On binary machines with a guard digit (almost all
* machines) it does not change DSIGMA(I) at all. On hexadecimal
* and decimal machines with a guard digit, it slightly
* changes the bottommost bits of DSIGMA(I). It does not account
* for hexadecimal or decimal machines without guard digits
* (we know of none). We use a subroutine call to compute
* 2*DSIGMA(I) to prevent optimizing compilers from eliminating
* this code.
*
DO 20 I = 1, K
DSIGMA( I ) = DLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
20 CONTINUE
*
* Keep a copy of Z.
*
CALL DCOPY( K, Z, 1, Q, 1 )
*
* Normalize Z.
*
RHO = DNRM2( K, Z, 1 )
CALL DLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
RHO = RHO*RHO
*
* Find the new singular values.
*
DO 30 J = 1, K
CALL DLASD4( K, J, DSIGMA, Z, U( 1, J ), RHO, D( J ),
$ VT( 1, J ), INFO )
*
* If the zero finder fails, report the convergence failure.
*
IF( INFO.NE.0 ) THEN
RETURN
END IF
30 CONTINUE
*
* Compute updated Z.
*
DO 60 I = 1, K
Z( I ) = U( I, K )*VT( I, K )
DO 40 J = 1, I - 1
Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
$ ( DSIGMA( I )-DSIGMA( J ) ) /
$ ( DSIGMA( I )+DSIGMA( J ) ) )
40 CONTINUE
DO 50 J = I, K - 1
Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
$ ( DSIGMA( I )-DSIGMA( J+1 ) ) /
$ ( DSIGMA( I )+DSIGMA( J+1 ) ) )
50 CONTINUE
Z( I ) = SIGN( SQRT( ABS( Z( I ) ) ), Q( I, 1 ) )
60 CONTINUE
*
* Compute left singular vectors of the modified diagonal matrix,
* and store related information for the right singular vectors.
*
DO 90 I = 1, K
VT( 1, I ) = Z( 1 ) / U( 1, I ) / VT( 1, I )
U( 1, I ) = NEGONE
DO 70 J = 2, K
VT( J, I ) = Z( J ) / U( J, I ) / VT( J, I )
U( J, I ) = DSIGMA( J )*VT( J, I )
70 CONTINUE
TEMP = DNRM2( K, U( 1, I ), 1 )
Q( 1, I ) = U( 1, I ) / TEMP
DO 80 J = 2, K
JC = IDXC( J )
Q( J, I ) = U( JC, I ) / TEMP
80 CONTINUE
90 CONTINUE
*
* Update the left singular vector matrix.
*
IF( K.EQ.2 ) THEN
CALL DGEMM( 'N', 'N', N, K, K, ONE, U2, LDU2, Q, LDQ, ZERO, U,
$ LDU )
GO TO 100
END IF
IF( CTOT( 1 ).GT.0 ) THEN
CALL DGEMM( 'N', 'N', NL, K, CTOT( 1 ), ONE, U2( 1, 2 ), LDU2,
$ Q( 2, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
IF( CTOT( 3 ).GT.0 ) THEN
KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
$ LDU2, Q( KTEMP, 1 ), LDQ, ONE, U( 1, 1 ), LDU )
END IF
ELSE IF( CTOT( 3 ).GT.0 ) THEN
KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
$ LDU2, Q( KTEMP, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
ELSE
CALL DLACPY( 'F', NL, K, U2, LDU2, U, LDU )
END IF
CALL DCOPY( K, Q( 1, 1 ), LDQ, U( NLP1, 1 ), LDU )
KTEMP = 2 + CTOT( 1 )
CTEMP = CTOT( 2 ) + CTOT( 3 )
CALL DGEMM( 'N', 'N', NR, K, CTEMP, ONE, U2( NLP2, KTEMP ), LDU2,
$ Q( KTEMP, 1 ), LDQ, ZERO, U( NLP2, 1 ), LDU )
*
* Generate the right singular vectors.
*
100 CONTINUE
DO 120 I = 1, K
TEMP = DNRM2( K, VT( 1, I ), 1 )
Q( I, 1 ) = VT( 1, I ) / TEMP
DO 110 J = 2, K
JC = IDXC( J )
Q( I, J ) = VT( JC, I ) / TEMP
110 CONTINUE
120 CONTINUE
*
* Update the right singular vector matrix.
*
IF( K.EQ.2 ) THEN
CALL DGEMM( 'N', 'N', K, M, K, ONE, Q, LDQ, VT2, LDVT2, ZERO,
$ VT, LDVT )
RETURN
END IF
KTEMP = 1 + CTOT( 1 )
CALL DGEMM( 'N', 'N', K, NLP1, KTEMP, ONE, Q( 1, 1 ), LDQ,
$ VT2( 1, 1 ), LDVT2, ZERO, VT( 1, 1 ), LDVT )
KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
IF( KTEMP.LE.LDVT2 )
$ CALL DGEMM( 'N', 'N', K, NLP1, CTOT( 3 ), ONE, Q( 1, KTEMP ),
$ LDQ, VT2( KTEMP, 1 ), LDVT2, ONE, VT( 1, 1 ),
$ LDVT )
*
KTEMP = CTOT( 1 ) + 1
NRP1 = NR + SQRE
IF( KTEMP.GT.1 ) THEN
DO 130 I = 1, K
Q( I, KTEMP ) = Q( I, 1 )
130 CONTINUE
DO 140 I = NLP2, M
VT2( KTEMP, I ) = VT2( 1, I )
140 CONTINUE
END IF
CTEMP = 1 + CTOT( 2 ) + CTOT( 3 )
CALL DGEMM( 'N', 'N', K, NRP1, CTEMP, ONE, Q( 1, KTEMP ), LDQ,
$ VT2( KTEMP, NLP2 ), LDVT2, ZERO, VT( 1, NLP2 ), LDVT )
*
RETURN
*
* End of DLASD3
*
END
|