1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
*> \brief \b DLASD8 finds the square roots of the roots of the secular equation, and stores, for each element in D, the distance to its two nearest poles. Used by sbdsdc.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLASD8 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd8.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd8.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd8.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDDIFR,
* DSIGMA, WORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER ICOMPQ, INFO, K, LDDIFR
* ..
* .. Array Arguments ..
* DOUBLE PRECISION D( * ), DIFL( * ), DIFR( LDDIFR, * ),
* $ DSIGMA( * ), VF( * ), VL( * ), WORK( * ),
* $ Z( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLASD8 finds the square roots of the roots of the secular equation,
*> as defined by the values in DSIGMA and Z. It makes the appropriate
*> calls to DLASD4, and stores, for each element in D, the distance
*> to its two nearest poles (elements in DSIGMA). It also updates
*> the arrays VF and VL, the first and last components of all the
*> right singular vectors of the original bidiagonal matrix.
*>
*> DLASD8 is called from DLASD6.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ICOMPQ
*> \verbatim
*> ICOMPQ is INTEGER
*> Specifies whether singular vectors are to be computed in
*> factored form in the calling routine:
*> = 0: Compute singular values only.
*> = 1: Compute singular vectors in factored form as well.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The number of terms in the rational function to be solved
*> by DLASD4. K >= 1.
*> \endverbatim
*>
*> \param[out] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension ( K )
*> On output, D contains the updated singular values.
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*> Z is DOUBLE PRECISION array, dimension ( K )
*> On entry, the first K elements of this array contain the
*> components of the deflation-adjusted updating row vector.
*> On exit, Z is updated.
*> \endverbatim
*>
*> \param[in,out] VF
*> \verbatim
*> VF is DOUBLE PRECISION array, dimension ( K )
*> On entry, VF contains information passed through DBEDE8.
*> On exit, VF contains the first K components of the first
*> components of all right singular vectors of the bidiagonal
*> matrix.
*> \endverbatim
*>
*> \param[in,out] VL
*> \verbatim
*> VL is DOUBLE PRECISION array, dimension ( K )
*> On entry, VL contains information passed through DBEDE8.
*> On exit, VL contains the first K components of the last
*> components of all right singular vectors of the bidiagonal
*> matrix.
*> \endverbatim
*>
*> \param[out] DIFL
*> \verbatim
*> DIFL is DOUBLE PRECISION array, dimension ( K )
*> On exit, DIFL(I) = D(I) - DSIGMA(I).
*> \endverbatim
*>
*> \param[out] DIFR
*> \verbatim
*> DIFR is DOUBLE PRECISION array,
*> dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
*> dimension ( K ) if ICOMPQ = 0.
*> On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
*> defined and will not be referenced.
*>
*> If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
*> normalizing factors for the right singular vector matrix.
*> \endverbatim
*>
*> \param[in] LDDIFR
*> \verbatim
*> LDDIFR is INTEGER
*> The leading dimension of DIFR, must be at least K.
*> \endverbatim
*>
*> \param[in,out] DSIGMA
*> \verbatim
*> DSIGMA is DOUBLE PRECISION array, dimension ( K )
*> On entry, the first K elements of this array contain the old
*> roots of the deflated updating problem. These are the poles
*> of the secular equation.
*> On exit, the elements of DSIGMA may be very slightly altered
*> in value.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (3*K)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: if INFO = 1, a singular value did not converge
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2017
*
*> \ingroup OTHERauxiliary
*
*> \par Contributors:
* ==================
*>
*> Ming Gu and Huan Ren, Computer Science Division, University of
*> California at Berkeley, USA
*>
* =====================================================================
SUBROUTINE DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDDIFR,
$ DSIGMA, WORK, INFO )
*
* -- LAPACK auxiliary routine (version 3.7.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* June 2017
*
* .. Scalar Arguments ..
INTEGER ICOMPQ, INFO, K, LDDIFR
* ..
* .. Array Arguments ..
DOUBLE PRECISION D( * ), DIFL( * ), DIFR( LDDIFR, * ),
$ DSIGMA( * ), VF( * ), VL( * ), WORK( * ),
$ Z( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, IWK1, IWK2, IWK2I, IWK3, IWK3I, J
DOUBLE PRECISION DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, RHO, TEMP
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DLASCL, DLASD4, DLASET, XERBLA
* ..
* .. External Functions ..
DOUBLE PRECISION DDOT, DLAMC3, DNRM2
EXTERNAL DDOT, DLAMC3, DNRM2
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SIGN, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
*
IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
INFO = -1
ELSE IF( K.LT.1 ) THEN
INFO = -2
ELSE IF( LDDIFR.LT.K ) THEN
INFO = -9
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DLASD8', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( K.EQ.1 ) THEN
D( 1 ) = ABS( Z( 1 ) )
DIFL( 1 ) = D( 1 )
IF( ICOMPQ.EQ.1 ) THEN
DIFL( 2 ) = ONE
DIFR( 1, 2 ) = ONE
END IF
RETURN
END IF
*
* Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
* be computed with high relative accuracy (barring over/underflow).
* This is a problem on machines without a guard digit in
* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
* The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
* which on any of these machines zeros out the bottommost
* bit of DSIGMA(I) if it is 1; this makes the subsequent
* subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
* occurs. On binary machines with a guard digit (almost all
* machines) it does not change DSIGMA(I) at all. On hexadecimal
* and decimal machines with a guard digit, it slightly
* changes the bottommost bits of DSIGMA(I). It does not account
* for hexadecimal or decimal machines without guard digits
* (we know of none). We use a subroutine call to compute
* 2*DLAMBDA(I) to prevent optimizing compilers from eliminating
* this code.
*
DO 10 I = 1, K
DSIGMA( I ) = DLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
10 CONTINUE
*
* Book keeping.
*
IWK1 = 1
IWK2 = IWK1 + K
IWK3 = IWK2 + K
IWK2I = IWK2 - 1
IWK3I = IWK3 - 1
*
* Normalize Z.
*
RHO = DNRM2( K, Z, 1 )
CALL DLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
RHO = RHO*RHO
*
* Initialize WORK(IWK3).
*
CALL DLASET( 'A', K, 1, ONE, ONE, WORK( IWK3 ), K )
*
* Compute the updated singular values, the arrays DIFL, DIFR,
* and the updated Z.
*
DO 40 J = 1, K
CALL DLASD4( K, J, DSIGMA, Z, WORK( IWK1 ), RHO, D( J ),
$ WORK( IWK2 ), INFO )
*
* If the root finder fails, report the convergence failure.
*
IF( INFO.NE.0 ) THEN
RETURN
END IF
WORK( IWK3I+J ) = WORK( IWK3I+J )*WORK( J )*WORK( IWK2I+J )
DIFL( J ) = -WORK( J )
DIFR( J, 1 ) = -WORK( J+1 )
DO 20 I = 1, J - 1
WORK( IWK3I+I ) = WORK( IWK3I+I )*WORK( I )*
$ WORK( IWK2I+I ) / ( DSIGMA( I )-
$ DSIGMA( J ) ) / ( DSIGMA( I )+
$ DSIGMA( J ) )
20 CONTINUE
DO 30 I = J + 1, K
WORK( IWK3I+I ) = WORK( IWK3I+I )*WORK( I )*
$ WORK( IWK2I+I ) / ( DSIGMA( I )-
$ DSIGMA( J ) ) / ( DSIGMA( I )+
$ DSIGMA( J ) )
30 CONTINUE
40 CONTINUE
*
* Compute updated Z.
*
DO 50 I = 1, K
Z( I ) = SIGN( SQRT( ABS( WORK( IWK3I+I ) ) ), Z( I ) )
50 CONTINUE
*
* Update VF and VL.
*
DO 80 J = 1, K
DIFLJ = DIFL( J )
DJ = D( J )
DSIGJ = -DSIGMA( J )
IF( J.LT.K ) THEN
DIFRJ = -DIFR( J, 1 )
DSIGJP = -DSIGMA( J+1 )
END IF
WORK( J ) = -Z( J ) / DIFLJ / ( DSIGMA( J )+DJ )
DO 60 I = 1, J - 1
WORK( I ) = Z( I ) / ( DLAMC3( DSIGMA( I ), DSIGJ )-DIFLJ )
$ / ( DSIGMA( I )+DJ )
60 CONTINUE
DO 70 I = J + 1, K
WORK( I ) = Z( I ) / ( DLAMC3( DSIGMA( I ), DSIGJP )+DIFRJ )
$ / ( DSIGMA( I )+DJ )
70 CONTINUE
TEMP = DNRM2( K, WORK, 1 )
WORK( IWK2I+J ) = DDOT( K, WORK, 1, VF, 1 ) / TEMP
WORK( IWK3I+J ) = DDOT( K, WORK, 1, VL, 1 ) / TEMP
IF( ICOMPQ.EQ.1 ) THEN
DIFR( J, 2 ) = TEMP
END IF
80 CONTINUE
*
CALL DCOPY( K, WORK( IWK2 ), 1, VF, 1 )
CALL DCOPY( K, WORK( IWK3 ), 1, VL, 1 )
*
RETURN
*
* End of DLASD8
*
END
|